List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2919816/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Geometries of Transition-Metal Complexes from Density-Functional Theory. Journal of Chemical Theory and Computation, 2006, 2, 1282-1290.	5.3	557
2	Geometries of Third-Row Transition-Metal Complexes from Density-Functional Theory. Journal of Chemical Theory and Computation, 2008, 4, 1449-1459.	5.3	421
3	The DFT route to NMR chemical shifts. Journal of Computational Chemistry, 1999, 20, 91-105.	3.3	274
4	Hydrogen Generation from Alcohols Catalyzed by Rutheniumâ^'Triphenylphosphine Complexes: Multiple Reaction Pathways. Journal of the American Chemical Society, 2010, 132, 8056-8070.	13.7	215
5	Geometries of Second-Row Transition-Metal Complexes from Density-Functional Theory. Journal of Chemical Theory and Computation, 2007, 3, 2234-2242.	5.3	154
6	Density functional computations of transition metal NMR chemical shifts: dramatic effects of Hartree-Fock exchange. Chemical Physics Letters, 1997, 267, 251-257.	2.6	143
7	Noncovalent Interactions in a Transition-Metal Triphenylphosphine Complex: a Density Functional Case Study. Inorganic Chemistry, 2009, 48, 4622-4624.	4.0	136
8	Medium Effects on51V NMR Chemical Shifts: A Density Functional Study. Chemistry - A European Journal, 2001, 7, 4487-4494.	3.3	108
9	Mechanism of Alkyne Alkoxycarbonylation at a Pd Catalyst with P,N Hemilabile Ligands: A Density Functional Study. Chemistry - A European Journal, 2014, 20, 13923-13926.	3.3	79
10	NMR spectroscopy: quantumâ€chemical calculations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 634-647.	14.6	76
11	Simulation of59Co NMR Chemical Shifts in Aqueous Solution. Chemistry - A European Journal, 2006, 12, 477-488.	3.3	63
12	Understanding a Hydroformylation Catalyst that Produces Branched Aldehydes from Alkyl Alkenes. Journal of the American Chemical Society, 2017, 139, 15921-15932.	13.7	63
13	Uncovering the Mechanism of Homogeneous Methyl Methacrylate Formation with P,N Chelating Ligands and Palladium: Favored Reaction Channels and Selectivities. Organometallics, 2015, 34, 438-449.	2.3	57
14	Molecular mechanism of activation of human musk receptors OR5AN1 and OR1A1 by (<i>R</i>) Tj ETQq0 0 0 rg Sciences of the United States of America, 2018, 115, E3950-E3958.	gBT /Overlo 7.1	ock 10 Tf 50 57
15	Mechanism of Water Exchange in Aqueous Uranyl(VI) Ion. A Density Functional Molecular Dynamics Study. Inorganic Chemistry, 2006, 45, 3834-3836.	4.0	56
16	Insights into Uranyl Chemistry from Molecular Dynamics Simulations. ChemPhysChem, 2011, 12, 3095-3105.	2.1	54
17	First-Principles Calculations of Paramagnetic NMR Shifts. , 2004, , 325-338.		52
18	Theoretical investigations of NMR chemical shifts and reactivities of oxovanadium(v) compounds. Journal of Computational Chemistry, 1998, 19, 113-122.	3.3	51

#	Article	IF	CITATIONS
19	Liquid Methanol from DFT and DFT/MM Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2013, 9, 106-118.	5.3	51
20	Thermal and solvent effects on57Fe NMR chemical shifts. Physical Chemistry Chemical Physics, 2002, 4, 5508-5514.	2.8	50
21	Density Functional Theory Study of Uranium(VI) Aquo Chloro Complexes in Aqueous Solution. Journal of Physical Chemistry A, 2008, 112, 2428-2436.	2.5	50
22	Oxygen Exchange in Uranyl Hydroxide via Two "Nonclassical―Ions. Inorganic Chemistry, 2010, 49, 3821-3827.	4.0	48
23	Water versus Acetonitrile Coordination to Uranyl. Density Functional Study of Cooperative Polarization Effects in Solution. Inorganic Chemistry, 2011, 50, 299-308.	4.0	48
24	X-ray Structures and DFT Calculations on Rhodiumâ^'Olefin Complexes:Â Comments on the103Rh NMR Shiftâ^'Stability Correlation. Organometallics, 2000, 19, 5589-5596.	2.3	47
25	Calculations of One-Electron Redox Potentials of Oxoiron(IV) Porphyrin Complexes. Journal of Chemical Theory and Computation, 2014, 10, 243-251.	5.3	47
26	Remarkably Large Geometry Dependence of57Fe NMR Chemical Shifts. Angewandte Chemie - International Edition, 2002, 41, 2312-2315.	13.8	46
27	Chapter 3 DFT Computations of Transition-Metal Chemical Shifts. Annual Reports on NMR Spectroscopy, 2008, , 77-126.	1.5	43
28	Geometrically Enforced Donor-Facilitated Dehydrocoupling Leading to an Isolable Arsanylidine-Phosphorane. Journal of the American Chemical Society, 2014, 136, 6247-6250.	13.7	41
29	Hyperconjugation Is the Source of Helicity in Perfluorinated <i>n</i> â€Alkanes. Angewandte Chemie - International Edition, 2017, 56, 7867-7870.	13.8	41
30	Modeling Molecular Crystals by QM/MM: Self-Consistent Electrostatic Embedding for Geometry Optimizations and Molecular Property Calculations in the Solid. Journal of Chemical Theory and Computation, 2012, 8, 498-508.	5.3	39
31	The Role of Metal Hydroxide Complexes in Late Transition Metalâ€Mediated Transmetalation Reaction: The Case of Gold. Advanced Synthesis and Catalysis, 2012, 354, 2380-2386.	4.3	39
32	On the Importance of Decarbonylation as a Sideâ€Reaction in the Ruthenium atalysed Dehydrogenation of Alcohols: A Combined Experimental and Density Functional Study. Chemistry - A European Journal, 2014, 20, 4141-4155.	3.3	39
33	Density-Functional Computation of99Ru NMR Parameters. Chemistry - A European Journal, 2000, 6, 3272-3280.	3.3	37
34	On the rate-determining step and the ligand electronic effects in rhodium catalysed hydrogenation of enamines and the hydroaminomethylation of alkenes. Catalysis Science and Technology, 2011, 1, 431.	4.1	36
35	Analysis of CF···FC Interactions on Cyclohexane and Naphthalene Frameworks. Journal of Physical Chemistry A, 2014, 118, 7901-7910.	2.5	36
36	Bicarbonate and Alkyl Carbonate Radicals: Structural Integrity and Reactions with Lipid Components. Journal of the American Chemical Society, 2015, 137, 16153-16162.	13.7	36

#	Article	IF	CITATIONS
37	Density Functional Calculations of95Mo NMR Chemical Shifts: Applications to Model Catalysts for Imine Metathesis. Chemistry - A European Journal, 1999, 5, 3514-3522.	3.3	35
38	Weak Te,Te Interactions through the Looking Glass of NMR Spin–Spin Coupling. Angewandte Chemie - International Edition, 2013, 52, 2495-2498.	13.8	34
39	Structural, Spectroscopic and Computational Examination of the Dative Interaction in Constrained Phosphine–Stibines and Phosphine–Stiboranes. Chemistry - A European Journal, 2015, 21, 7520-7531.	3.3	33
40	Density functional computation of 55 Mn NMR parameters. Theoretical Chemistry Accounts, 2002, 107, 336-342.	1.4	31
41	Computational59Co NMR Spectroscopy: Beyond Static Moleculesâ€. Journal of Chemical Theory and Computation, 2005, 1, 181-193.	5.3	30
42	The X-ray Structures of Sulfones. Journal of Chemical Crystallography, 2010, 40, 253-265.	1.1	29
43	Acidity of Uranyl(VI) Hydrate Studied with First-Principles Molecular Dynamics Simulations. ChemPhysChem, 2006, 7, 2290-2293.	2.1	27
44	Stereoelectronic Interactions and the One-Bond C–F Coupling Constant in Sevoflurane. Journal of Physical Chemistry A, 2012, 116, 1677-1682.	2.5	26
45	Structure-directing effects in (110)-layered hybrid perovskites containing two distinct organic moieties. Chemical Communications, 2019, 55, 9935-9938.	4.1	26
46	Density functional computation of49Ti NMR chemical shifts. Magnetic Resonance in Chemistry, 2004, 42, 737-744.	1.9	25
47	Density functional study of aqueous uranyl(VI) fluoride complexes. Chemical Physics Letters, 2009, 467, 287-293.	2.6	25
48	Effect of Counterions on the Structure and Stability of Aqueous Uranyl(VI) Complexes. A First-Principles Molecular Dynamics Study. Inorganic Chemistry, 2009, 48, 9977-9979.	4.0	25
49	Selenation/Thionation of αâ€Amino Acids: Formation and Xâ€ray Structures of Diselenopiperazine and Dithiopiperazine and Related Compounds. European Journal of Organic Chemistry, 2011, 2011, 3067-3073.	2.4	25
50	Water versus Acetonitrile Coordination to Uranyl. Effect of Chloride Ligands. Inorganic Chemistry, 2012, 51, 1943-1952.	4.0	24
51	Structure and Dynamics of Iron Pentacarbonyl. Organometallics, 2019, 38, 4288-4297.	2.3	24
52	1,2-Difluoroethane: the angular dependance on 1JCF coupling constants is independent of hyperconjugation. Chemical Communications, 2012, 48, 2433.	4.1	23
53	Geminally Substituted Tris(acenaphthyl) and Bis(acenaphthyl) Arsines, Stibines, and Bismuthine: A Structural and Nuclear Magnetic Resonance Investigation. Inorganic Chemistry, 2016, 55, 7117-7125.	4.0	23
54	Density-functional computation of53Cr NMR chemical shifts. Magnetic Resonance in Chemistry, 2006, 44, 661-668.	1.9	22

#	Article	IF	CITATIONS
55	Density-functional computation of 99Tc NMR chemical shifts. Magnetic Resonance in Chemistry, 2008, 46, S36-S44.	1.9	22
56	An efficient route for the synthesis of phosphorus–selenium macro-heterocycles. Chemical Communications, 2013, 49, 2619-2621.	4.1	22
57	Particularly strong C–Hâ⊄Ï€ interactions between benzene and all-cis 1,2,3,4,5,6-hexafluorocyclohexane. Physical Chemistry Chemical Physics, 2015, 17, 29475-29478.	2.8	22
58	Paramagnetic NMR of Phenolic Oxime Copper Complexes: A Joint Experimental and Density Functional Study. Chemistry - A European Journal, 2016, 22, 15328-15339.	3.3	22
59	Prediction of a New Delocalised Bonding Motif between Group 15 or Group 16 Atoms. ChemPhysChem, 2011, 12, 2405-2408.	2.1	21
60	Artificial Metalloenzymes as Catalysts for Oxidative Lignin Degradation. ACS Sustainable Chemistry and Engineering, 2018, 6, 15100-15107.	6.7	21
61	Ligand electronic fine-tuning and its repercussion on the photocatalytic activity and mechanistic pathways of the copper-photocatalysed aza-Henry reaction. Catalysis Science and Technology, 2020, 10, 7745-7756.	4.1	21
62	A Density Functional Study of the Rotational Barrier of Tricarbonyl(η4-norbornadiene)iron. Effect of the Torsional Angle on the Carbonyl Stretching Spectra. Inorganic Chemistry, 1997, 36, 2922-2924.	4.0	20
63	Isomerisation versus carbonylative pathways in the hydroxy-carbonylation, methoxy-carbonylation, and amino-carbonylation of N-tosyl-3-pyrroline. Catalysis Science and Technology, 2016, 6, 7477-7485.	4.1	20
64	On the Origin of ^{35/37} Cl Isotope Effects on ¹⁹⁵ Pt NMR Chemical Shifts. A Density Functional Study. Journal of Chemical Theory and Computation, 2012, 8, 1344-1350.	5.3	19
65	Hydricity of 3d Transition Metal Complexes from Density Functional Theory: A Benchmarking Study. Molecules, 2021, 26, 4072.	3.8	19
66	peri-Substituted Phosphino-Phosphonium Salts: Synthesis and Reactivity. Organometallics, 2013, 32, 3481-3492.	2.3	18
67	Sterically Restricted Tin Phosphines, Stabilized by Weak Intramolecular Donor–Acceptor Interactions. Organometallics, 2014, 33, 2424-2433.	2.3	18
68	Insights into structure and redox potential of lignin peroxidase from QM/MM calculations. Organic and Biomolecular Chemistry, 2016, 14, 2385-2389.	2.8	18
69	Density-functional computation of 93Nb NMR chemical shifts. Magnetic Resonance in Chemistry, 2010, 48, S61-S68.	1.9	17
70	Inter―and intramolecular CF··A·c0 interactions on aliphatic and cyclohexane carbonyl derivatives. Journal of Computational Chemistry, 2016, 37, 25-33.	3.3	17
71	Dealkanative Main Group Couplings across the peri-Gap. Journal of the American Chemical Society, 2017, 139, 18545-18551.	13.7	17
72	NMR chemical shifts of urea loaded copper benzoate. A joint solid-state NMR and DFT study. Solid State Nuclear Magnetic Resonance, 2019, 101, 31-37.	2.3	17

#	Article	IF	CITATIONS
73	First experimental evidence for a bis-ethene chromium(I) complex forming from an activated ethene oligomerization catalyst. Science Advances, 2020, 6, .	10.3	17
74	Understanding Catalyst Structure–Selectivity Relationships in Pd-Catalyzed Enantioselective Methoxycarbonylation of Styrene. Organometallics, 2020, 39, 4544-4556.	2.3	17
75	Manganese-Catalyzed Dehydrogenative Synthesis of Urea Derivatives and Polyureas. ACS Catalysis, 2022, 12, 6923-6933.	11.2	17
76	A Study of Through-Space and Through-Bond JPP Coupling in a Rigid Nonsymmetrical Bis(phosphine) and Its Metal Complexes. Inorganic Chemistry, 2018, 57, 3387-3398.	4.0	16
77	Computational NMR Spectroscopy of Transition-Metal/Nitroimidazole Complexes: Theoretical Investigation of Potential Radiosensitizers. Helvetica Chimica Acta, 2005, 88, 2705-2721.	1.6	15
78	Bridging the Gap: Attractive 3c-4e Interactions inperi-Substituted Acenaphthylenes. European Journal of Inorganic Chemistry, 2014, 2014, 1512-1523.	2.0	15
79	NMR Chemical Shifts of Zr@C28. How Shielded Can 91Zr Get?. Journal of Physical Chemistry A, 1997, 101, 2514-2517.	2.5	14
80	Sterically Crowded Tin Acenaphthenes. Organometallics, 2012, 31, 2922-2930.	2.3	14
81	Hyperconjugation Is the Source of Helicity in Perfluorinated <i>n</i> â€Alkanes. Angewandte Chemie, 2017, 129, 7975-7978.	2.0	14
82	Benzylic Functionalisation of Phenyl allâ€ <i>cis</i> â€2,3,5,6â€Tetrafluorocyclohexane Provides Access to New Organofluorine Building Blocks. Chemistry - A European Journal, 2018, 24, 13290-13296.	3.3	14
83	Palladium-catalysed alkyne alkoxycarbonylation with P,N-chelating ligands revisited: a density functional theory study. Physical Chemistry Chemical Physics, 2019, 21, 8543-8552.	2.8	14
84	Phosphorus–Bismuth <i>Peri</i> -Substituted Acenaphthenes: A Synthetic, Structural, and Computational Study. Inorganic Chemistry, 2020, 59, 5616-5625.	4.0	13
85	Effect of Ligand Backbone on the Selectivity and Stability of Rhodium Hydroformylation Catalysts Derived from Phospholane-Phosphites. Organometallics, 2021, 40, 3966-3978.	2.3	13
86	Hydride Abstraction and Deprotonation - an Efficient Route to Low Coordinate Phosphorus and Arsenic Species. European Journal of Inorganic Chemistry, 2016, 2016, 659-666.	2.0	12
87	Laccase Redox Potentials: pH Dependence and Mutants, a QM/MM Study. Journal of Physical Chemistry B, 2016, 120, 9265-9276.	2.6	12
88	Substituent effects on 61Ni NMR chemical shifts. Dalton Transactions, 2009, , 6037.	3.3	11
89	Binding modes of oxalate in UO2(oxalate) in aqueous solution studied with first-principles molecular dynamics simulations. Implications for the chelate effect. Dalton Transactions, 2011, 40, 11192.	3.3	11
90	Speciation of La(III) Chloride Complexes in Water and Acetonitrile: A Density Functional Study. Inorganic Chemistry, 2012, 51, 13396-13407.	4.0	11

#	Article	IF	CITATIONS
91	Modelling Zwitterions in Solution: 3â€Fluoroâ€Î³â€aminobutyric Acid (3Fâ€GABA). Chemistry - A European Journal, 2012, 18, 184-195.	3.3	11
92	Calculation and experimental measurement of paramagnetic NMR parameters of phenolic oximate Cu(<scp>ii</scp>) complexes. Chemical Communications, 2017, 53, 10512-10515.	4.1	11
93	Mechanism of the Catalytic Carboxylation of Alkylboronates with CO ₂ Using Niâ^'NHC Complexes: A DFT Study. Chemistry - A European Journal, 2017, 23, 14954-14961.	3.3	11
94	Design of a Highly Active Pd Catalyst with P,N Hemilabile Ligands for Alkoxycarbonylation of Alkynes and Allenes: A Density Functional Theory Study. Chemistry - A European Journal, 2019, 25, 11625-11629.	3.3	11
95	Palladium-catalysed methoxycarbonylation of ethene with bidentate diphosphine ligands: a density functional theory study. Physical Chemistry Chemical Physics, 2020, 22, 24330-24336.	2.8	11
96	Janus Face Allâ€ <i>cis</i> 1,2,4,5â€ŧetrakis(trifluoromethyl)―and Allâ€ <i>cis</i> 1,2,3,4,5,6â€hexakis(trifluoromethyl)―Cyclohexanes. Angewandte Chemie - International Edition, 2020, 59, 19905-19909.	13.8	11
97	Systematic Evaluation of Modern Density Functional Methods for the Computation of NMR Shifts of 3d Transition-Metal Nuclei. Journal of Chemical Theory and Computation, 2022, 18, 273-292.	5.3	11
98	Conformational preferences of Ac-Gly-NHMe in solution. RSC Advances, 2015, 5, 13052-13060.	3.6	10
99	Nuclear Magnetic Shielding of Monoboranes: Calculation and Assessment of ¹¹ B NMR Chemical Shifts in Planar BX ₃ and in Tetrahedral [BX ₄] ^{â^'} Systems. Journal of Physical Chemistry A, 2017, 121, 9631-9637.	2.5	10
100	Isothiourea-Catalyzed Enantioselective Michael Addition of Malonates to α,β-Unsaturated Aryl Esters. Organic Letters, 2022, 24, 4040-4045.	4.6	9
101	Computational Insight into ¹⁰³ Rh Chemical Shift–Structure Correlations in Rhodium Bis(phosphine) Complexes. Organometallics, 2013, 32, 6437-6444.	2.3	8
102	[UO ₂ (NH ₃) ₅]Br ₂ ·NH ₃ : synthesis, crystal structure, and speciation in liquid ammonia solution by first-principles molecular dynamics simulations. Dalton Transactions, 2015, 44, 7332-7337.	3.3	8
103	Dodeka(ethylene)octamine. Chemistry - A European Journal, 2011, 17, 3575-3578.	3.3	7
104	The Synthesis and Evaluation of Fluoroâ€, Trifluoromethylâ€, and Iodomuscimols as GABA Agonists. Chemistry - A European Journal, 2017, 23, 10848-10852.	3.3	7
105	Computational modelling of Pd-catalysed alkoxycarbonylation of alkenes and alkynes. Physical Chemistry Chemical Physics, 2021, 23, 15869-15880.	2.8	7
106	<i>Ab Initio</i> Molecular Dynamics Investigation of Beryllium Complexes. Inorganic Chemistry, 2020, 59, 2413-2425.	4.0	7
107	Expanding the structural chemistry of the weakly coordinating closo-carborane CB11H12 â~: its monoiodo derivatives with and without C 5v symmetry. Structural Chemistry, 2013, 24, 927-932.	2.0	6
108	Accommodation of Lattice Mismatch in a Thiol Self-Assembled Monolayer. Journal of Physical Chemistry C, 2013, 117, 4647-4656.	3.1	6

#	Article	IF	CITATIONS
109	Structure of a uranyl peroxo complex in aqueous solution from first-principles molecular dynamics simulations. Dalton Transactions, 2014, 43, 11129-11137.	3.3	6
110	α―and Î²â€Łapachone Isomerization in Acidic Media: Insights from Experimental and Implicit/Explicit Solvation Approaches. ChemPlusChem, 2019, 84, 52-61.	2.8	6
111	Density functional study of the one-bond C F coupling constant in α-fluorocarbonyl and α-fluorosulfonyl compounds. Journal of Fluorine Chemistry, 2012, 140, 82-87.	1.7	5
112	Janus Face Allâ€ <i>cis</i> 1,2,4,5â€ŧetrakis(trifluoromethyl)―and Allâ€ <i>cis</i> 1,2,3,4,5,6â€hexakis(trifluoromethyl)―Cyclohexanes. Angewandte Chemie, 2020, 132, 20077-20081.	2.0	5
113	Density Functional Study of Interactions between Fluorinated Cyclohexanes and Arenes. Helvetica Chimica Acta, 2014, 97, 797-807.	1.6	4
114	Acetyl Coenzymeâ€A Analogues as Rationally Designed Inhibitors of Citrate Synthase. ChemBioChem, 2019, 20, 1174-1182.	2.6	4
115	Probing the helical integrity of multivicinal all- <i>syn</i> fluoro alkanes. Organic and Biomolecular Chemistry, 2020, 18, 878-887.	2.8	4
116	On the Catalytic Activity of [RuH ₂ (PPh ₃) ₃ (CO)] (PPh ₃ =triphenylphosphine) in Rutheniumâ€Catalysed Generation of Hydrogen from Alcohols: a Combined Experimental and DFT study. ChemCatChem, 2020, 12, 2995-3009.	3.7	4
117	Unveiling the mechanism of <i>N</i> â€methylation of indole with dimethylcarbonate using either DABCO or DBU as catalyst. Journal of Mass Spectrometry, 2021, 56, e4707.	1.6	4
118	Synthetic and Structural Study of peri-Substituted Phosphine-Arsines. Molecules, 2021, 26, 7222.	3.8	4
119	Carbene-like reactivity of methoxy groups in a single crystal SAPO-34 MTO catalyst. Catalysis Science and Technology, 2022, 12, 2289-2305.	4.1	4
120	The Preparation and Structure of [Pt(S ₂ N ₂){P(OR) <i>_n</i> Râ€ ² _{3–<i>n</i>} } ₂] and [Pt(SeSN ₂)Â{P(OMe) <i>_n</i> Ph _{3–<i>n</i>} } ₂] (<i>n</i> = 0–3). European Journal of Inorganic Chemistry, 2010, 2010, 3185-3194.	2.0	3
121	Computational thermochemistry of iron–platinum carbonyl clusters. Chemical Physics Letters, 2011, 509, 158-161.	2.6	3
122	Infrared Dynamics of Iron Carbonyl Diene Complexes. Journal of Physical Chemistry A, 2018, 122, 3497-3505.	2.5	3
123	SERS of Trititanate Nanotubes: Selective Enhancement of Catechol Compounds. ChemistrySelect, 2018, 3, 8338-8343.	1.5	3
124	Organofluorine chemistry: Difluoromethylene motifs spaced 1,3 to each other imparts facial polarity to a cyclohexane ring. Beilstein Journal of Organic Chemistry, 2016, 12, 2823-2827.	2.2	2
125	Thionylimido Complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1795-1798.	1.2	2
126	Computational Screening of Anode Coatings for Garnetâ€ŧype Solid‣tate Batteries. Batteries and Supercaps, 0, , .	4.7	2

#	Article	IF	CITATIONS
127	Sulfur and Phosphorus Oxyacid Radicals. Journal of Physical Chemistry A, 2022, 126, 760-771.	2.5	2
128	Origin of the temperature dependence of ¹³ C pNMR shifts for copper paddlewheel MOFs. Chemical Science, 2022, 13, 2674-2685.	7.4	2
129	Formation of metallacarboxylic acids through Hieber base reaction. A density functional theory study. Journal of Molecular Modeling, 2019, 25, 45.	1.8	1
130	Density Functional Theory Study of Pd Aggregation on a Pyridineâ€Terminated Selfâ€Assembled Monolayer. Chemistry - A European Journal, 2020, 26, 10555-10563.	3.3	1
131	Inside Cover: Conformational Dependence of Throughâ€Space Tellurium–Tellurium Spin–Spin Coupling in <i>Peri</i> â€Substituted Bis(Tellurides) (Chem. Eur. J. 9/2015). Chemistry - A European Journal, 2015, 21, 3506-3506.	3.3	0
132	Modelling uranyl chemistry in liquid ammonia from density functional theory. Chemical Communications, 2018, 54, 10431-10434.	4.1	0
133	Origin of the Diastereoselectivity of the Heterogeneous Hydrogenation of a Substituted Indolizine. Journal of Organic Chemistry, 2020, 85, 11541-11548.	3.2	Ο
134	Bridging (Thionylimido)metal Complexes. Inorganic Chemistry, 2021, 60, 8423-8427.	4.0	0
135	Electrochemical Generation of Metal Nanostructures Using Self-Assembled Monolayers As Templates. ECS Meeting Abstracts, 2019, , .	0.0	Ο
136	(Invited) Templated Electrodeposition By Molecular Assemblies: Exploring Limits. ECS Meeting Abstracts, 2020, MA2020-01, 1134-1134.	0.0	0