
Pinshane Y Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2919569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wafer-Scale Programmed Assembly of One-Atom-Thick Crystals. Nano Letters, 2022, , .	4.5	11
2	Atomic-Resolution Imaging of Small Organic Molecules on Graphene. Nano Letters, 2022, 22, 3628-3635.	4.5	3
3	Structure and Magnetic Properties of Ni ₄ V ₃ O ₁₀ , an Antiferromagnet with Three Types of Vanadium–Oxygen Polyhedra. Chemistry of Materials, 2022, 34, 4721-4731.	3.2	0
4	Enhanced Photoluminescence of Multiple Two-Dimensional van der Waals Heterostructures Fabricated by Layer-by-Layer Oxidation of MoS ₂ . ACS Applied Materials & Interfaces, 2021, 13, 1245-1252.	4.0	28
5	Designing the Bending Stiffness of 2D Material Heterostructures. Advanced Materials, 2021, 33, e2007269.	11.1	31
6	2D Materials: Designing the Bending Stiffness of 2D Material Heterostructures (Adv. Mater. 9/2021). Advanced Materials, 2021, 33, 2170066.	11.1	0
7	Nearly hyperuniform, nonhyperuniform, and antihyperuniform density fluctuations in two-dimensional transition metal dichalcogenides with defects. Physical Review B, 2021, 103, .	1.1	12
8	Curvature-dependent Organic Ligand Binding on Gold Nanostars Revealed by Quantitative EELS Spectral Imaging. Microscopy and Microanalysis, 2021, 27, 3320-3322.	0.2	1
9	Probing the Strain Fields of Single-Atom Defects in 2D materials with Sub-Picometer Precision. Microscopy and Microanalysis, 2021, 27, 1944-1944.	0.2	2
10	Deep Learning Enabled Atom-by-Atom Analysis of 2D materials on the Million-Atom Scale. Microscopy and Microanalysis, 2021, 27, 904-906.	0.2	2
11	Understanding graphene's role as a protective substrate for atomic-resolution electron microscopy of small organic molecules. Microscopy and Microanalysis, 2021, 27, 2900-2901.	0.2	0
12	Anomalous Dimensionalityâ€Ðriven Phase Transition of MoTe ₂ in Van der Waals Heterostructure. Advanced Functional Materials, 2021, 31, 2107376.	7.8	14
13	Ultrasoft slip-mediated bending in few-layer graphene. Nature Materials, 2020, 19, 305-309.	13.3	159
14	Quantifying the Protection Factor of Graphene Substrates for Atomic-scale Imaging of Organic Crystals. Microscopy and Microanalysis, 2020, 26, 786-787.	0.2	1
15	Deep Learning Enabled Strain Mapping of Single-Atom Defects in Two-Dimensional Transition Metal Dichalcogenides with Sub-Picometer Precision. Nano Letters, 2020, 20, 3369-3377.	4.5	78
16	Evolution of Nb oxide nanoprecipitates in Cu during reactive mechanical alloying. Journal of Materials Research, 2020, 35, 98-111.	1.2	3
17	Preparation of Nonprecious Metal Electrocatalysts for the Reduction of Oxygen Using a Low-Temperature Sacrificial Metal. Journal of the American Chemical Society, 2020, 142, 5477-5481.	6.6	110
18	Stochastic Stress Jumps Due to Soliton Dynamics in Two-Dimensional van der Waals Interfaces. Nano Letters, 2020, 20, 1201-1207.	4.5	16

PINSHANE Y HUANG

#	Article	IF	CITATIONS
19	Quantitative Imaging of Organic Ligand Density on Anisotropic Inorganic Nanocrystals. Nano Letters, 2019, 19, 6308-6314.	4.5	50
20	Quantitative Chemical Mapping of Anisotropic Molecular Distributions on Gold Nanorods. Microscopy and Microanalysis, 2019, 25, 1772-1773.	0.2	0
21	Deep Learning Enabled Measurements of Single-Atom Defects in 2D Transition Metal Dichalcogenides with Sub-Picometer Precision. Microscopy and Microanalysis, 2019, 25, 172-173.	0.2	3
22	Probing The Mechanical Properties of Few-Layer Graphene with Aberration-Corrected, Low-Voltage STEM. Microscopy and Microanalysis, 2019, 25, 1730-1731.	0.2	0
23	Ultrasonic Nebulization for TEM Sample Preparation on Single-Layer Graphene Grids. Nano Letters, 2019, 19, 1938-1943.	4.5	11
24	Spin–Orbit Torque Switching in a Nearly Compensated Heusler Ferrimagnet. Advanced Materials, 2019, 31, e1805361.	11.1	45
25	Strain Modulation of Graphene by Nanoscale Substrate Curvatures: A Molecular View. Nano Letters, 2018, 18, 2098-2104.	4.5	62
26	Atomically precise graphene etch stops for three dimensional integrated systems from two dimensional material heterostructures. Nature Communications, 2018, 9, 3988.	5.8	56
27	High Thermal Conductivity in Isotopically Enriched Cubic Boron Phosphide. Advanced Functional Materials, 2018, 28, 1805116.	7.8	73
28	Quantitative Chemical Mapping of Soft-Hard Interfaces on Gold Nanorods. Microscopy and Microanalysis, 2018, 24, 1674-1675.	0.2	0
29	Unusual high thermal conductivity in boron arsenide bulk crystals. Science, 2018, 361, 582-585.	6.0	300
30	High thermal conductivity in cubic boron arsenide crystals. Science, 2018, 361, 579-581.	6.0	347
31	Energy Transfer from Quantum Dots to Graphene and MoS ₂ : The Role of Absorption and Screening in Two-Dimensional Materials. Nano Letters, 2016, 16, 2328-2333.	4.5	179
32	Rapid, all-optical crystal orientation imaging of two-dimensional transition metal dichalcogenide monolayers. Applied Physics Letters, 2015, 107, .	1.5	18
33	Graphene kirigami. Nature, 2015, 524, 204-207.	13.7	703
34	Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nature Nanotechnology, 2015, 10, 534-540.	15.6	1,099
35	High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015, 520, 656-660.	13.7	1,562
36	In-Plane Anisotropy in Mono- and Few-Layer ReS ₂ Probed by Raman Spectroscopy and Scanning Transmission Electron Microscopy. Nano Letters, 2015, 15, 5667-5672.	4.5	406

PINSHANE Y HUANG

#	Article	IF	CITATIONS
37	Tailoring the Electronic Structure in Bilayer Molybdenum Disulfide via Interlayer Twist. Nano Letters, 2014, 14, 3869-3875.	4.5	278
38	Atomic Imaging Across Strain Boundaries in Bilayer Graphene with ADF-STEM and DF-TEM. Microscopy and Microanalysis, 2014, 20, 1058-1059.	0.2	0
39	lmaging Atomic Rearrangements in Two-Dimensional Silica Glass: Watching Silica's Dance. Science, 2013, 342, 224-227.	6.0	209
40	Strain solitons and topological defects in bilayer graphene. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11256-11260.	3.3	407
41	Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Materials, 2013, 12, 554-561.	13.3	1,896
42	From atoms to grains: Transmission electron microscopy of graphene. MRS Bulletin, 2012, 37, 1214-1221.	1.7	10
43	Ultrathin Oxide Films by Atomic Layer Deposition on Graphene. Nano Letters, 2012, 12, 3706-3710.	4.5	74
44	Chemical Vapor Deposition-Derived Graphene with Electrical Performance of Exfoliated Graphene. Nano Letters, 2012, 12, 2751-2756.	4.5	365
45	Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature, 2012, 488, 627-632.	13.7	747
46	Twinning and Twisting of Tri- and Bilayer Graphene. Nano Letters, 2012, 12, 1609-1615.	4.5	224
47	Direct Imaging of a Two-Dimensional Silica Glass on Graphene. Nano Letters, 2012, 12, 1081-1086.	4.5	236
48	Tailoring Electrical Transport Across Grain Boundaries in Polycrystalline Graphene. Science, 2012, 336, 1143-1146.	6.0	535
49	Softened Elastic Response and Unzipping in Chemical Vapor Deposition Graphene Membranes. Nano Letters, 2011, 11, 2259-2263.	4.5	316
50	Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature, 2011, 469, 389-392.	13.7	1,790
51	Tunnel magnetoresistance and spin torque switching in MgO-based magnetic tunnel junctions with a Co/Ni multilayer electrode. Applied Physics Letters, 2010, 97, .	1.5	34