

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2919353/publications.pdf Version: 2024-02-01

FENCL

#	Article	IF	CITATIONS
1	Hydrogenation of furfural to furfuryl alcohol over MOF-derived Fe/Cu@C and Fe ₃ O ₄ /Cu@C catalysts. Reaction Chemistry and Engineering, 2022, 7, 994-1004.	3.7	2
2	Efficient Role of Nanosheet-Like Pr ₂ O ₃ Induced Surface-Interface Synergistic Structures over Cu-Based Catalysts for Enhanced Methanol Production from CO ₂ Hydrogenation. ACS Applied Materials & Interfaces, 2022, 14, 2768-2781.	8.0	9
3	Robust MOF-derived carbon-supported bimetallic Ni–Co catalysts for aqueous phase hydrodeoxygenation of vanillin. Dalton Transactions, 2022, 51, 2238-2249.	3.3	14
4	Fabrication of Al2O3-ZrO2 composite catalysts with tunable acid-base properties for highly efficient aldol condensation of furfural with acetone. Catalysis Communications, 2022, 166, 106451.	3.3	5
5	Regulating Surfaceâ€Interface Structures of Znâ€Incorporated LiAlâ€I.DH Supported Ru Catalysts for Efficient Benzene Hydrogenation to Produce Cyclohexene. ChemCatChem, 2022, 14, .	3.7	6
6	Supported Ru nanocatalyst over phosphotungstate intercalated Zn-Al layered double hydroxide derived mixed metal oxides for efficient hydrodeoxygenation of guaiacol. Molecular Catalysis, 2022, 528, 112503.	2.0	9
7	Highly efficient catalytic transfer hydrogenation of furfural over defect-rich amphoteric ZrO ₂ with abundant surface acid–base sites. Dalton Transactions, 2021, 50, 2616-2626.	3.3	19
8	Exceptional low-temperature activity of a perovskite-type AlCeO ₃ solid solution-supported Ni-based nanocatalyst towards CO ₂ methanation. Catalysis Science and Technology, 2021, 11, 3894-3904.	4.1	15
9	Surface Defect-Induced Site-Specific Dispersion of Pd Nanoclusters on TiO ₂ Nanoparticles for Semihydrogenation of Phenyl Acetylene. ACS Applied Nano Materials, 2021, 4, 4688-4698.	5.0	21
10	Efficient Transfer Hydrogenolysis of 5-Hydromethylfurfural to 2,5-Dimethylfuran over CoFe Bimetallic Catalysts Using Formic Acid as a Sustainable Hydrogen Donor. Industrial & Engineering Chemistry Research, 2021, 60, 5826-5837.	3.7	16
11	Ordered macroporous Co3O4-supported Ru nanoparticles: A robust catalyst for efficient hydrodeoxygenation of anisole. Catalysis Communications, 2021, 153, 106302.	3.3	8
12	Structure-tunable pompon-like RuCo catalysts: Insight into the roles of atomically dispersed Ru-Co sites and crystallographic structures for guaiacol hydrodeoxygenation. Journal of Catalysis, 2021, 398, 76-88.	6.2	34
13	Cooperative Effects between Ni-Mo Alloy Sites and Defective Structures over Hierarchical Ni-Mo Bimetallic Catalysts Enable the Enhanced Hydrodeoxygenation Activity. ACS Sustainable Chemistry and Engineering, 2021, 9, 11604-11615.	6.7	39
14	Unveiling the roles of Fe-Co interactions over ternary spinel-type ZnCoxFe2-xO4 catalysts for highly efficient CO2 hydrogenation to produce light olefins. Journal of Catalysis, 2021, 400, 355-366.	6.2	45
15	Fabrication of Zr–Ce Oxide Solid Solution Surrounded Cu-Based Catalyst Assisted by a Microliquid Film Reactor for Efficient CO ₂ Hydrogenation to Produce Methanol. Industrial & Engineering Chemistry Research, 2021, 60, 16188-16200.	3.7	15
16	MoO _{<i>x</i>} -Decorated ZrO ₂ Nanostructures Supporting Ru Nanoclusters for Selective Hydrodeoxygenation of Anisole to Benzene. ACS Applied Nano Materials, 2021, 4, 12588-12599.	5.0	16
17	Robust structured Cu-based film catalysts with greatly enhanced catalytic hydrogenation property. Applied Surface Science, 2020, 504, 144364.	6.1	17
18	Nickel-nitrogen-modified porous carbon/carbon nanotube hybrid with necklace-like geometry: An efficient and durable electrocatalyst for selective reduction of CO2 to CO in a wide negative potential region. Electrochimica Acta, 2020, 334, 135583.	5.2	21

#	Article	IF	CITATIONS
19	Nitrogen-Doped Carbon Quantum Dots-Decorated Mg-Al Layered Double Hydroxide-Supported Gold Nanocatalysts for Efficient Base-Free Oxidation of Benzyl Alcohol. Industrial & Engineering Chemistry Research, 2020, 59, 636-646.	3.7	16
20	Tuning surface-interface structures of ZrO2 supported copper catalysts by in situ introduction of indium to promote CO2 hydrogenation to methanol. Applied Catalysis A: General, 2020, 605, 117805.	4.3	26
21	The promotional effect of surface Ru decoration on the catalytic performance of Co-based nanocatalysts for guaiacol hydrodeoxygenation. Molecular Catalysis, 2020, 497, 111224.	2.0	12
22	NiCu Nanoparticles for Catalytic Hydrogenation of Biomass-Derived Carbonyl Compounds. ACS Applied Nano Materials, 2020, 3, 9226-9237.	5.0	25
23	Simultaneous Enhancements of Ultraviolet-Shielding Properties and Thermal Stability/Photostability of Poly(vinyl chloride) via Incorporation of Defect-Rich CeO ₂ Nanoparticles. Industrial & Engineering Chemistry Research, 2020, 59, 9959-9968.	3.7	16
24	Visualization of materials using the confocal laser scanning microscopy technique. Chemical Society Reviews, 2020, 49, 2408-2425.	38.1	43
25	Significant Promotion of Surface Oxygen Vacancies on Bimetallic CoNi Nanocatalysts for Hydrodeoxygenation of Biomass-derived Vanillin to Produce Methylcyclohexanol. ACS Sustainable Chemistry and Engineering, 2020, 8, 6075-6089.	6.7	81
26	Carbon dot-assisted luminescence of singlet oxygen: the generation dynamics but not the cumulative amount of singlet oxygen is responsible for the photodynamic therapy efficacy. Nanoscale Horizons, 2020, 5, 978-985.	8.0	29
27	Controlling product selectivity by surface defects over MoO -decorated Ni-based nanocatalysts for Î ³ -valerolactone hydrogenolysis. Journal of Catalysis, 2019, 379, 100-111.	6.2	28
28	Hierarchical Flower-like Bimetallic NiCu catalysts for Catalytic Transfer Hydrogenation of Ethyl Levulinate into Î ³ -Valerolactone. Industrial & Engineering Chemistry Research, 2019, 58, 10317-10327.	3.7	41
29	A hybrid composite of hydroxyapatite and Ca–Al layered double hydroxide supported Au nanoparticles for highly efficient base-free aerobic oxidation of glucose. Dalton Transactions, 2019, 48, 9161-9172.	3.3	18
30	Dispersive non-noble metal phosphide embedded in alumina arrays derived from layered double hydroxide precursor toward efficient oxygen evolution reaction and biomass upgrading. Journal of Materials Chemistry A, 2019, 7, 13695-13704.	10.3	36
31	Defect-rich Ni–Ti layered double hydroxide as a highly efficient support for Au nanoparticles in base-free and solvent-free selective oxidation of benzyl alcohol. Dalton Transactions, 2018, 47, 5226-5235.	3.3	22
32	Nitrogen-doped carbon-decorated copper catalyst for highly efficient transfer hydrogenolysis of 5-hydroxymethylfurfural to convertibly produce 2,5-dimethylfuran or 2,5-dimethyltetrahydrofuran. Applied Catalysis B: Environmental, 2018, 226, 523-533.	20.2	137
33	Dispersing Metallic Platinum on Green Rust Enables Effective and Selective Hydrogenation of Carbonyl Group in Cinnamaldehyde. ACS Omega, 2018, 3, 12778-12787.	3.5	30
34	A robust core–shell nanostructured nickel–iron alloy@nitrogen-containing carbon catalyst for the highly efficient hydrogenation of nitroarenes. Dalton Transactions, 2018, 47, 13668-13679.	3.3	15
35	Efficient conversion of furfural into cyclopentanone over high performing and stable Cu/ZrO2 catalysts. Applied Catalysis A: General, 2018, 561, 117-126.	4.3	54
36	A hierarchical flower-like hollow alumina supported bimetallic AuPd nanoparticle catalyst for enhanced solvent-free ethylbenzene oxidation. Dalton Transactions, 2018, 47, 7776-7786.	3.3	15

#	Article	IF	CITATIONS
37	Assembling Ni–Co phosphides/carbon hollow nanocages and nanosheets with carbon nanotubes into a hierarchical necklace-like nanohybrid for electrocatalytic oxygen evolution reaction. Nanoscale, 2018, 10, 13555-13564.	5.6	81
38	Pt Nanoparticles Supported on Nitrogenâ€Dopedâ€Carbonâ€Decorated CeO ₂ for Baseâ€Free Aerobic Oxidation of 5â€Hydroxymethylfurfural. Chemistry - an Asian Journal, 2018, 13, 2714-2722.	3.3	32
39	Dandelion-like cobalt oxide microsphere-supported RuCo bimetallic catalyst for highly efficient hydrogenolysis of 5-hydroxymethylfurfural. Applied Catalysis B: Environmental, 2018, 237, 649-659.	20.2	81
40	Role of Surface Cooperative Effect in Copper Catalysts toward Highly Selective Synthesis of Valeric Biofuels. ACS Sustainable Chemistry and Engineering, 2017, 5, 2282-2291.	6.7	32
41	Oxidative Esterification of Methacrolein to Methyl Methacrylate over Gold Nanoparticles on Hydroxyapatite. ChemCatChem, 2017, 9, 1230-1241.	3.7	40
42	Enhanced base-catalyzed activity and structural stability of nitrogen-doped carbon modified MgO–MgFe2O4 magnetic composites as catalysts for transesterification of tributyrin. Dalton Transactions, 2017, 46, 6324-6332.	3.3	6
43	Highly Efficient and Stable Bimetallic AuPd over La-Doped Ca–Mg–Al Layered Double Hydroxide for Base-Free Aerobic Oxidation of 5-Hydroxymethylfurfural in Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 5852-5861.	6.7	88
44	Structure-dependent selective hydrogenation of cinnamaldehyde over high-surface-area CeO 2 -ZrO 2 composites supported Pt nanoparticles. Chemical Engineering Journal, 2017, 322, 234-245.	12.7	82
45	In Situ Growth Route To Fabricate Ternary Co–Ni–Al Mixed-Metal Oxide Film as a Promising Structured Catalyst for the Oxidation of Benzyl Alcohol. Industrial & Engineering Chemistry Research, 2017, 56, 4237-4244.	3.7	10
46	Highly efficient synchronized production of phenol and 2,5-dimethylfuran through a bimetallic Ni–Cu catalyzed dehydrogenation–hydrogenation coupling process without any external hydrogen and oxygen supply. Green Chemistry, 2017, 19, 4353-4363.	9.0	43
47	Highly dispersed palladium nanoparticles generated <i>in situ</i> on layered double hydroxide nanowalls for ultrasensitive electrochemical detection of hydrazine. Analytical Methods, 2017, 9, 6629-6635.	2.7	12
48	Highly efficient transformation of Î ³ -valerolactone to valerate esters over structure-controlled copper/zirconia catalysts prepared via a reduction-oxidation route. Applied Catalysis A: General, 2017, 543, 180-188.	4.3	22
49	Structureâ€Dependent Baseâ€Free Aerobic Oxidation of Benzyl Alcohol over Highâ€Surfaceâ€Area Mgâ€Doped ZnAl ₂ O ₄ Spinel Supported Gold Nanoparticles. ChemPlusChem, 2017, 82, 270-279.	2.8	5
50	Highly Efficient Hybrid Cobalt–Copper–Aluminum Layered Double Hydroxide/Graphene Nanocomposites as Catalysts for the Oxidation of Alkylaromatics. ChemCatChem, 2016, 8, 363-371.	3.7	19
51	Greatly Enhanced Stability of Supported Copper Nanocatalyst with a Thin Nitrogenâ€Doped Carbon Overlayer for Transfer Dehydrogenation. ChemNanoMat, 2016, 2, 888-896.	2.8	5
52	Promotional Role of Surface Defects on Carbonâ€ s upported Rutheniumâ€Based Catalysts in the Transfer Hydrogenation of Furfural. ChemCatChem, 2016, 8, 3769-3779.	3.7	76
53	Highly Efficient Vaporâ€Phase Hydrogenation of Biomassâ€Derived Levulinic Acid Over Structured Nanowallâ€Like Nickelâ€Based Catalyst. ChemCatChem, 2016, 8, 2724-2733.	3.7	30
54	Hydrogenation of biomass-derived compounds containing a carbonyl group over a copper-based nanocatalyst: Insight into the origin and influence of surface oxygen vacancies. Journal of Catalysis, 2016, 340, 184-195.	6.2	101

#	Article	IF	CITATIONS
55	A gas-phase coupling process for simultaneous production of Î ³ -butyrolactone and furfuryl alcohol without external hydrogen over bifunctional base-metal heterogeneous catalysts. Green Chemistry, 2016, 18, 2317-2322.	9.0	23
56	Hierarchical flower-like Co–Cu mixed metal oxide microspheres as highly efficient catalysts for selective oxidation of ethylbenzene. Chemical Engineering Journal, 2016, 288, 169-178.	12.7	72
57	A La-doped Mg–Al mixed metal oxide supported copper catalyst with enhanced catalytic performance in transfer dehydrogenation of 1-decanol. Dalton Transactions, 2016, 45, 1093-1102.	3.3	25
58	CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method. Applied Catalysis B: Environmental, 2016, 191, 8-17.	20.2	260
59	Surface Lewis acid-promoted copper-based nanocatalysts for highly efficient and chemoselective hydrogenation of citral to unsaturated allylic alcohols. Catalysis Science and Technology, 2016, 6, 2337-2348.	4.1	36
60	Fabrication of Porous ZrO ₂ Nanostructures with Controlled Crystalline Phases and Structures via a Facile and Cost-Effective Hydrothermal Approach. Industrial & Engineering Chemistry Research, 2015, 54, 12795-12804.	3.7	44
61	Solvent-free oxidation of ethylbenzene over hierarchical flower-like core–shell structured Co-based mixed metal oxides with significantly enhanced catalytic performance. Catalysis Science and Technology, 2015, 5, 540-548.	4.1	59
62	Aluminumâ€Doped Zirconiaâ€Supported Copper Nanocatalysts: Surface Synergistic Catalytic Effects in the Gasâ€Phase Hydrogenation of Esters. ChemCatChem, 2014, 6, 3501-3510.	3.7	39
63	Synthesis of <scp><scp>Ni</scp></scp> ²⁺ â€doped <scp><scp>ZnAl</scp></scp> ₂ <scp><scp>O</scp></scp> ₄ / <scp><scp>ZnO</scp></scp> Composite Phosphor Film with Largely Enhanced Polychromatic Emission via a Singleâ€Source Precursor, Iournal of the American Ceramic Society. 2014. 97. 1123-1130.	scp> 8.8	14
64	Catalytic applications of layered double hydroxides: recent advances and perspectives. Chemical Society Reviews, 2014, 43, 7040-7066.	38.1	1,381
65	Facile synthesis and enhanced catalytic performance of graphene-supported Ni nanocatalyst from a layered double hydroxide-based composite precursor. Journal of Materials Chemistry A, 2014, 2, 7880.	10.3	96
66	Lewis-base-promoted copper-based catalyst for highly efficient hydrogenation of dimethyl 1,4-cyclohexane dicarboxylate. Green Chemistry, 2013, 15, 2389.	9.0	52
67	Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Applied Catalysis A: General, 2013, 468, 442-452.	4.3	209
68	A mild solution chemistry method to synthesize hydrotalcite-supported platinum nanocrystals for selective hydrogenation of cinnamaldehyde in neat water. Catalysis Science and Technology, 2013, 3, 2819.	4.1	57
69	Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Journal of Catalysis, 2013, 298, 51-60.	6.2	322
70	A hybrid nanocomposite precursor route to synthesize dispersion-enhanced Ni catalysts for the selective hydrogenation of o-chloronitrobenzene. Catalysis Science and Technology, 2013, 3, 982.	4.1	27
71	Liquid-Phase Hydrogenation of Cinnamaldehyde: Enhancing Selectivity of Supported Gold Catalysts by Incorporation of Cerium into the Support. Industrial & Engineering Chemistry Research, 2013, 52, 288-296.	3.7	47
72	Structure and Catalytic Property of Li–Al Metal Oxides from Layered Double Hydroxide Precursors Prepared via a Facile Solution Route. Industrial & Engineering Chemistry Research, 2011, 50, 7120-7128.	3.7	31

#	Article	IF	CITATIONS
73	Synthesis, Characterization, and Catalytic Performance of Highly Dispersed Supported Nickel Catalysts from Ni–Al Layered Double Hydroxides. Industrial & Engineering Chemistry Research, 2011, 50, 13717-13726.	3.7	40
74	Self-generated Template Pathway to High-Surface-Area Zinc Aluminate Spinel with Mesopore Network from a Single-Source Inorganic Precursor. Chemistry of Materials, 2006, 18, 5852-5859.	6.7	130
75	Structure and Basicity of Mesoporous Materials from Mg/Al/In Layered Double Hydroxides Prepared by Separate Nucleation and Aging Steps Method. Journal of Porous Materials, 2005, 12, 55-63.	2.6	61
76	Photocatalytic Activity of Highly Porous Zinc Ferrite Prepared from a Zinc-Iron(III)-Sulfate Layered Double Hydroxide Precursor. Journal of Porous Materials, 2004, 11, 97-105.	2.6	57
77	Preparation of Layered Double-Hydroxide Nanomaterials with a Uniform Crystallite Size Using a New Method Involving Separate Nucleation and Aging Steps. Chemistry of Materials, 2002, 14, 4286-4291.	6.7	608

Applications of Layered Double Hydroxides. , 0, , 193-223.

396