Taylor Morrisette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2919024/publications.pdf

Version: 2024-02-01

185 papers 15,361 citations

³⁸⁷⁴² 50 h-index

119 g-index

186 all docs

186 docs citations

186 times ranked 11774 citing authors

#	Article	IF	CITATIONS
1	Evaluation of Bacteriophage Cocktails Alone and in Combination with Daptomycin against Daptomycin-Nonsusceptible Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0162321.	3.2	8
2	Infectious disease: how to manage Gram-positive and Gram-negative pathogen conundrums with dual beta-lactam therapy. Drugs in Context, 2022, 11 , 1 - 18 .	2.2	3
3	Panacea or oversimplification: Relating AUC and troughs. American Journal of Health-System Pharmacy, 2022, , .	1.0	O
4	Therapeutic Strategies for Emerging Multidrug-Resistant Pseudomonas aeruginosa. Infectious Diseases and Therapy, 2022, 11, 661-682.	4.0	80
5	How to Harness the Power of Social Media for Quality Drug Information in Infectious Diseases: Perspectives on Behalf of the Society of Infectious Diseases Pharmacists. Clinical Infectious Diseases, 2022, 74, e23-e33.	5.8	1
6	Evaluation of Bacteriophage-Antibiotic Combination Therapy for Biofilm-Embedded MDR Enterococcus faecium. Antibiotics, 2022, 11, 392.	3.7	8
7	Novel Combination Therapy for Extensively Drug-Resistant <i>Acinetobacter baumannii</i> Necrotizing Pneumonia Complicated by Empyema: A Case Report. Open Forum Infectious Diseases, 2022, 9, ofac092.	0.9	7
8	Eradication of Biofilm-Mediated Methicillin-Resistant Staphylococcus aureus Infections <i>In Vitro</i> : Bacteriophage-Antibiotic Combination. Microbiology Spectrum, 2022, 10, e0041122.	3.0	22
9	Multicenter Cohort Study of Ceftaroline Versus Daptomycin for Treatment of Methicillin-Resistant <i>Staphylococcus aureus </i> Bloodstream Infection. Open Forum Infectious Diseases, 2022, 9, ofab606.	0.9	12
10	Clinical Characteristics Associated with Bacterial Bloodstream Coinfection in COVID-19. Infectious Diseases and Therapy, 2022, , 1.	4.0	3
11	Real-World, Multicenter Case Series of Patients Treated with Oral Omadacycline for Resistant Gram-Negative Pathogens. Infectious Diseases and Therapy, 2022, , 1.	4.0	2
12	Real-World Use of Tedizolid Phosphate for 28 Days or More: A Case Series Describing Tolerability and Clinical Success. Open Forum Infectious Diseases, 2022, 9, .	0.9	4
13	Bacteriophage-antibiotic combination therapy for multidrug-resistant Pseudomonas aeruginosa: <i>In vitro</i> synergy testing. Journal of Applied Microbiology, 2022, 133, 1636-1649.	3.1	13
14	Vancomycin Area Under the Curve to Predict Timely Clinical Response in the Treatment of Methicillin-resistant <i>Staphylococcus aureus</i> Clinical Infectious Diseases, 2021, 73, e4560-e4567.	5.8	7
15	Novel approaches for the treatment of methicillin-resistant Staphylococcus aureus: Using nanoparticles to overcome multidrug resistance. Drug Discovery Today, 2021, 26, 31-43.	6.4	30
16	Preliminary, Real-world, Multicenter Experience With Omadacycline for <i>Mycobacterium abscessus</i> Infections. Open Forum Infectious Diseases, 2021, 8, ofab002.	0.9	37
17	Impact of COVID-19 pandemic on training of pharmacy residents and fellows: Results from a national survey of postgraduate pharmacy trainees. American Journal of Health-System Pharmacy, 2021, 78, 1104-1111.	1.0	7
18	Comment on: AUCs and 123s: a critical appraisal of vancomycin therapeutic drug monitoring in paediatrics. Journal of Antimicrobial Chemotherapy, 2021, 76, 2486-2488.	3.0	3

#	Article	IF	CITATIONS
19	Standardized Treatment and Assessment Pathway Improves Mortality in Adults With Methicillin-resistant <i>Staphylococcus aureus</i> Bacteremia: STAPH Study. Open Forum Infectious Diseases, 2021, 8, ofab261.	0.9	7
20	Clinical Pharmacology of Bacteriophage Therapy: A Focus on Multidrug-Resistant Pseudomonas aeruginosa Infections. Antibiotics, 2021, 10, 556.	3.7	11
21	In Vitro Synergy of Colistin in Combination with Meropenem or Tigecycline against Carbapenem-Resistant Acinetobacter baumannii. Antibiotics, 2021, 10, 880.	3.7	16
22	Real-world, Multicenter Experience With Meropenem-Vaborbactam for Gram-Negative Bacterial Infections Including Carbapenem-Resistant <i>Enterobacterales</i> aeruginosa. Open Forum Infectious Diseases, 2021, 8, ofab371.	0.9	36
23	Biofilm Time-Kill Curves to Assess the Bactericidal Activity of Daptomycin Combinations against Biofilm-Producing Vancomycin-Resistant EnterococcusÂfaecium and faecalis. Antibiotics, 2021, 10, 897.	3.7	8
24	Exebacase in Addition to Daptomycin against MRSA. Antimicrobial Agents and Chemotherapy, 2021, 65, e0012821.	3.2	6
25	<i>In Vitro</i> Antibacterial Activity of Cefiderocol against Multidrug-Resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2021, 65, e0264620.	3.2	29
26	COVID-19: Before the Fall, An Evidence-Based Narrative Review of Treatment Options. Infectious Diseases and Therapy, 2021, 10, 93-113.	4.0	13
27	Folate Functionalized Lipid Nanoparticles for Targeted Therapy of Methicillin-Resistant Staphylococcus aureus. Pharmaceutics, 2021, 13, 1791.	4.5	9
28	Early Multicenter Experience With Imipenem-Cilastatin-Relebactam for Multidrug-Resistant Gram-Negative Infections. Open Forum Infectious Diseases, 2021, 8, ofab554.	0.9	18
29	Daptomycin Plus β-Lactam Combination Therapy for Methicillin-resistant Staphylococcus aureus Bloodstream Infections: A Retrospective, Comparative Cohort Study. Clinical Infectious Diseases, 2020, 71, 1-10.	5.8	79
30	Multicenter Cohort of Patients With Methicillin-Resistant Staphylococcus aureus Bacteremia Receiving Daptomycin Plus Ceftaroline Compared With Other MRSA Treatments. Open Forum Infectious Diseases, 2020, 7, ofz538.	0.9	52
31	Bacteriophage Therapeutics: A Primer for Clinicians on Phageâ€Antibiotic Combinations. Pharmacotherapy, 2020, 40, 153-168.	2.6	56
32	Cefiderocol: A Novel Siderophore Cephalosporin against Multidrugâ€Resistant Gramâ€Negative Pathogens. Pharmacotherapy, 2020, 40, 1228-1247.	2.6	28
33	Therapeutic Monitoring of Vancomycin for Serious Methicillin-resistant Staphylococcus aureus Infections: A Revised Consensus Guideline and Review by the American Society of Health-system Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists, Clinical Infectious Diseases, 2020, 71, 1361-1364	5.8	142
34	the Society of Infectious Diseases Pharmacists, Clinical Infectious Diseases, 2020, 71, 1361-1364. Executive Summary: Therapeutic Monitoring of Vancomycin for Serious Methicillin-Resistant Staphylococcus aureus Infections: A Revised Consensus Guideline and Review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Journal of the Pediatric	1.3	33
35	Infectious Diseases Society, 2020, 9, 281-284. Questions on Vancomycin Dosing. Clinical Infectious Diseases, 2020, 73, e1777-e1778.	5.8	1
36	The Evolving Reduction of Vancomycin and Daptomycin Susceptibility in MRSA—Salvaging the Gold Standards with Combination Therapy. Antibiotics, 2020, 9, 762.	3.7	19

#	Article	IF	CITATIONS
37	The Pharmacokinetic and Pharmacodynamic Properties of Hydroxychloroquine and Dose Selection for COVID-19: Putting the Cart Before the Horse. Infectious Diseases and Therapy, 2020, 9, 561-572.	4.0	23
38	Bacteriophage AB-SA01 Cocktail in Combination with Antibiotics against MRSA-VISA Strain in an <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2020, 65,	3.2	13
39	Dalbavancin, Vancomycin and Daptomycin Alone and in Combination with Cefazolin against Resistant Phenotypes of Staphylococcus aureus in a Pharmacokinetic/Pharmacodynamic Model. Antibiotics, 2020, 9, 696.	3.7	10
40	Bacteriophage-Antibiotic Combination Strategy: an Alternative against Methicillin-Resistant Phenotypes of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	31
41	Combination of Vancomycin or Daptomycin and Betaâ€lactam Antibiotics: A Metaâ€analysis. Pharmacotherapy, 2020, 40, 648-658.	2.6	19
42	A comparison of daptomycin alone and in combination with ceftaroline fosamil for methicillin-resistant Staphylococcus aureus bacteremia complicated by septic pulmonary emboli. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 39, 2199-2203.	2.9	8
43	Bacteriophage-Antibiotic Combinations for Enterococcus faecium with Varying Bacteriophage and Daptomycin Susceptibilities. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	28
44	Mechanistic Insights Into the Differential Efficacy of Daptomycin Plus β-Lactam Combinations Against Daptomycin-Resistant Enterococcus faecium. Journal of Infectious Diseases, 2020, 222, 1531-1539.	4.0	11
45	Therapeutic monitoring of vancomycin for serious methicillin-resistant (1) Staphylococcus aureus (1) infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Pharmacists. American Journal of	1.0	640
46	Real-world Multicenter Analysis of Clinical Outcomes and Safety of Meropenem-Vaborbactam in Patients Treated for Serious Gram-Negative Bacterial Infections. Open Forum Infectious Diseases, 2020, 7, ofaa051.	0.9	36
47	Combinations of (lipo)glycopeptides with \hat{l}^2 -lactams against MRSA: susceptibility insights. Journal of Antimicrobial Chemotherapy, 2020, 75, 2894-2901.	3.0	10
48	Evaluation of the INCREMENT-CPE, Pitt Bacteremia and qPitt Scores in Patients with Carbapenem-Resistant Enterobacteriaceae Infections Treated with Ceftazidime–Avibactam. Infectious Diseases and Therapy, 2020, 9, 291-304.	4.0	12
49	Early Experience With Eravacycline for Complicated Infections. Open Forum Infectious Diseases, 2020, 7, ofaa071.	0.9	27
50	Evaluation of Eravacycline: A Novel Fluorocycline. Pharmacotherapy, 2020, 40, 221-238.	2.6	37
51	A Multicenter Evaluation of Vancomycin-Associated Acute Kidney Injury in Hospitalized Patients with Acute Bacterial Skin and Skin Structure Infections. Infectious Diseases and Therapy, 2020, 9, 89-106.	4.0	24
52	Executive Summary: Therapeutic Monitoring of Vancomycin for Serious Methicillinâ€Resistant ⟨i>Staphylococcus aureus⟨ i> Infections: A Revised Consensus Guideline and Review of the American Society of Healthâ€System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Pharmacotherapy,	2.6	56
53	2020, 40, 363-367. Advantages of Outpatient Treatment with Longâ€Acting Lipoglycopeptides for Serious Gramâ€Positive Infections: A Review. Pharmacotherapy, 2020, 40, 469-478.	2.6	28
54	Monotherapy with Vancomycin or Daptomycin versus Combination Therapy with \hat{l}^2 -Lactams in the Treatment of Methicillin-Resistant Staphylococcus Aureus Bloodstream Infections: A Retrospective Cohort Analysis. Infectious Diseases and Therapy, 2020, 9, 325-339.	4.0	20

#	Article	IF	CITATIONS
55	Opportunities for antimicrobial stewardship among carbapenem-treated patients in 18 North American hospitals. International Journal of Antimicrobial Agents, 2020, 55, 105970.	2.5	7
56	Real-World Experience with Ceftolozane-Tazobactam for Multidrug-Resistant Gram-Negative Bacterial Infections. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	43
57	The Emerging Role of \hat{l}^2 -Lactams in the Treatment of Methicillin-Resistant Staphylococcus aureus Bloodstream Infections. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	23
58	Impact of Daptomycin Dose Exposure Alone or in Combination with \hat{l}^2 -Lactams or Rifampin against Vancomycin-Resistant Enterococci in an <i>In Vitro</i> Biofilm Model. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	19
59	Oral Vancomycin Prophylaxis as Secondary Prevention Against Clostridioides difficile Infection in the Hematopoietic Stem Cell Transplantation and Hematologic Malignancy Population. Biology of Blood and Marrow Transplantation, 2019, 25, 2091-2097.	2.0	29
60	Pharmacodynamics of daptomycin in combination with other antibiotics for the treatment of enterococcal bacteraemia. International Journal of Antimicrobial Agents, 2019, 54, 346-350.	2.5	9
61	Relationship Status between Vancomycin Loading Dose and Treatment Failure in Patients with MRSA Bacteremia: It's Complicated. Infectious Diseases and Therapy, 2019, 8, 627-640.	4.0	11
62	Parenteral Fosfomycin for the Treatment of Multidrug Resistant Bacterial Infections: The Rise of the Epoxide. Pharmacotherapy, 2019, 39, 1077-1094.	2.6	15
63	Dalbavancin Alone and in Combination with Ceftaroline against Four Different Phenotypes of <i>Staphylococcus aureus</i> in a Simulated Pharmacodynamic/Pharmacokinetic Model. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	20
64	Long-Acting Lipoglycopeptides: "Lineless Antibiotics―for Serious Infections in Persons Who Use Drugs. Open Forum Infectious Diseases, 2019, 6, ofz274.	0.9	44
65	Evaluation of the Synergy of Ceftazidime-Avibactam in Combination with Meropenem, Amikacin, Aztreonam, Colistin, or Fosfomycin against Well-Characterized Multidrug-Resistant Klebsiella pneumoniae and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	103
66	Trends in and Predictors of Carbapenem Consumption across North American Hospitals: Results from a Multicenter Survey by the MAD-ID Research Network. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	10
67	Delafloxacin in Acute Bacterial Skin and Skin Structure Infections. Clinical Infectious Diseases, 2019, 68, S191-S192.	5.8	2
68	Efficacy and Safety of Tedizolid Phosphate versus Linezolid in a Randomized Phase 3 Trial in Patients with Acute Bacterial Skin and Skin Structure Infection. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	24
69	On- and off-label utilization of dalbavancin and oritavancin for Gram-positive infections. Journal of Antimicrobial Chemotherapy, 2019, 74, 2405-2416.	3.0	61
70	Withdrawn as Duplicate: The Impact of Concomitant Empiric Cefepime on Patient Outcomes of Methicillin-Resistant Staphylococcus aureus Bloodstream Infections Treated With Vancomycin. Open Forum Infectious Diseases, 2019, 6, ofz077.	0.9	8
71	Teaching an Old Class New Tricks: A Novel Semi-Synthetic Aminoglycoside, Plazomicin. Infectious Diseases and Therapy, 2019, 8, 155-170.	4.0	20
72	Reply to Koehler et al. Clinical Infectious Diseases, 2019, 69, 901-902.	5.8	1

#	Article	IF	Citations
73	Reply to Cheng and Chuang. Clinical Infectious Diseases, 2019, 69, 903-904.	5.8	1
74	The Impact of Concomitant Empiric Cefepime on Patient Outcomes of Methicillin-Resistant Staphylococcus aureus Bloodstream Infections Treated With Vancomycin. Open Forum Infectious Diseases, 2019, 6, ofz079.	0.9	10
75	Daptomycin Dose-Ranging Evaluation with Single-Dose versus Multidose Ceftriaxone Combinations against Streptococcus mitis $\langle i \rangle$ /oralis $\langle i \rangle$ in an $\langle i \rangle$ Ex Vivo $\langle i \rangle$ Simulated Endocarditis Vegetation Model. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	13
76	A new simplified predictive model for mortality in methicillin-resistant Staphylococcus aureus bacteremia. European Journal of Clinical Microbiology and Infectious Diseases, 2019, 38, 843-850.	2.9	5
77	Diagnostic Stewardship: A Clinical Decision Rule for Blood Cultures in Community-Onset Methicillin-Resistant Staphylococcus aureus (MRSA) Skin and Soft Tissue Infections. Infectious Diseases and Therapy, 2019, 8, 229-242.	4.0	7
78	1596. Impact of Vancomycin Area Under Curve on Persistent Methicillin-Resistant Staphylococcus aureus (MRSA) Bloodstream Infections (BSI). Open Forum Infectious Diseases, 2019, 6, \$582-\$582.	0.9	0
79	Real-World Experience With Ceftazidime-Avibactam for Multidrug-Resistant Gram-Negative Bacterial Infections. Open Forum Infectious Diseases, 2019, 6, ofz522.	0.9	85
80	Pharmacodynamic Analysis of Daptomycin-treated Enterococcal Bacteremia: It Is Time to Change the Breakpoint. Clinical Infectious Diseases, 2019, 68, 1650-1657.	5.8	42
81	Sequential intravenous-to-oral outpatient antibiotic therapy for MRSA bacteraemia: one step closer. Journal of Antimicrobial Chemotherapy, 2019, 74, 489-498.	3.0	36
82	Risk Factors for Bloodstream Infections Among an Urban Population with Skin and Soft Tissue Infections: A Retrospective Unmatched Case-Control Study. Infectious Diseases and Therapy, 2019, 8, 75-85.	4.0	2
83	The Optimal Use of the Polymyxins Before Their Time Is Up. Pharmacotherapy, 2019, 39, 7-9.	2.6	5
84	Mutations in <i>cdsA</i> and <i>pgsA</i> Correlate with Daptomycin Resistance in <i>Streptococcus mitis</i> and <i>S. oralis</i> Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	21
85	Role of Vancomycin Minimum Inhibitory Concentrations by Modified Population Analysis Profile Method and Clinical Outcomes in High Inoculum Methicillin-Resistant Staphylococcus aureus Infections. Infectious Diseases and Therapy, 2018, 7, 161-169.	4.0	7
86	A Review of Combination Antimicrobial Therapy for Enterococcus faecalis Bloodstream Infections and Infective Endocarditis. Clinical Infectious Diseases, 2018, 67, 303-309.	5.8	150
87	Delafloxacin: Place in Therapy and Review of Microbiologic, Clinical and Pharmacologic Properties. Infectious Diseases and Therapy, 2018, 7, 197-217.	4.0	74
88	\hat{l}^2 -Lactam Combinations with Vancomycin Show Synergistic Activity against Vancomycin-Susceptible Staphylococcus aureus, Vancomycin-Intermediate S. aureus (VISA), and Heterogeneous VISA. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	38
89	Combination of Tedizolid and Daptomycin against Methicillin-Resistant Staphylococcus aureus in an <i>In Vitro</i> Model of Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	14
90	Novel application of published risk factors for methicillin-resistant S. aureus in acute bacterial skin and skin structure infections. International Journal of Antimicrobial Agents, 2018, 51, 43-46.	2.5	10

#	Article	IF	Citations
91	Identification of Vancomycin Exposure-Toxicity Thresholds in Hospitalized Patients Receiving Intravenous Vancomycin. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	96
92	Antimicrobial Stewardship Opportunities in Critically Ill Patients with Gram-Negative Lower Respiratory Tract Infections: A Multicenter Cross-Sectional Analysis. Infectious Diseases and Therapy, 2018, 7, 135-146.	4.0	14
93	Pathogen-Specific Clinical Trials: A New Paradigm in Clinical Trials for Multidrug-Resistant Organisms. Infectious Diseases and Therapy, 2018, 7, 401-405.	4.0	2
94	Evaluation of dalbavancin alone and in combination with \hat{l}^2 -lactam antibiotics against resistant phenotypes of Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2018, 74, 82-86.	3.0	14
95	Making the change to area under the curve–based vancomycin dosing. American Journal of Health-System Pharmacy, 2018, 75, 1986-1995.	1.0	68
96	Averting the post-antibiotic era: successful use of meropenem/vaborbactam for carbapenem-resistant Serratia marcescens and Enterobacter aerogenes bacteraemia in a haemodialysis patient. Journal of Antimicrobial Chemotherapy, 2018, 73, 3529-3531.	3.0	7
97	Influence of Inoculum Effect on the Efficacy of Daptomycin Monotherapy and in Combination with \hat{l}^2 -Lactams against Daptomycin-Susceptible Enterococcus faecium Harboring LiaSR Substitutions. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	34
98	Evaluation of Telavancin Alone and Combined with Ceftaroline or Rifampin against Methicillin-Resistant Staphylococcus aureus in an <i>In Vitro</i> Biofilm Model. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	9
99	Impact of cefazolin co-administration with vancomycin to reduce development of vancomycin-intermediate Staphylococcus aureus. Diagnostic Microbiology and Infectious Disease, 2018, 91, 363-370.	1.8	12
100	Combination of Vancomycin and Cefazolin Lipid Nanoparticles for Overcoming Antibiotic Resistance of MRSA. Materials, 2018, 11, 1245.	2.9	17
101	Perturbations of Phosphatidate Cytidylyltransferase (CdsA) Mediate Daptomycin Resistance in Streptococcus mitis/oralis by a Novel Mechanism. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	44
102	Role of Combination Antimicrobial Therapy for Vancomycinâ€Resistant <i>Enterococcus faecium </i> Infections: Review of the Current Evidence. Pharmacotherapy, 2017, 37, 579-592.	2.6	67
103	Evaluation of daptomycin combinations with cephalosporins or gentamicin against Streptococcus mitis group strains in an in vitro model of simulated endocardial vegetations (SEVs). Journal of Antimicrobial Chemotherapy, 2017, 72, 2290-2296.	3.0	17
104	Multicenter Observational Study of Ceftaroline Fosamil for Methicillin-Resistant Staphylococcus aureus Bloodstream Infections. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	60
105	Multidrug-resistant Pseudomonas aeruginosa lower respiratory tract infections in the intensive care unit: Prevalence and risk factors. Diagnostic Microbiology and Infectious Disease, 2017, 89, 61-66.	1.8	28
106	Genomic characterization of an extensively drug-resistant KPC-2-producing Klebsiella pneumoniae ST855 (CC258) only susceptible to ceftazidime-avibactam isolated in Brazil. Diagnostic Microbiology and Infectious Disease, 2017, 89, 324-327.	1.8	6
107	A Quasi-Experiment To Study the Impact of Vancomycin Area under the Concentration-Time Curve-Guided Dosing on Vancomycin-Associated Nephrotoxicity. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	178
108	\hat{l}^2 -Lactamase Inhibitors Enhance the Synergy between \hat{l}^2 -Lactam Antibiotics and Daptomycin against Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	12

#	Article	IF	CITATIONS
109	Risk of Acute Kidney Injury in Patients on Concomitant Vancomycin and Piperacillin–Tazobactam Compared to Those on Vancomycin and Cefepime. Clinical Infectious Diseases, 2017, 64, 116-123.	5.8	151
110	Classical \hat{l}^2 -Lactamase Inhibitors Potentiate the Activity of Daptomycin against Methicillin-Resistant Staphylococcus aureus and Colistin against Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	18
111	Comparison of clinical outcomes and risk factors in polymicrobial versus monomicrobial enterococcal bloodstream infections. American Journal of Infection Control, 2016, 44, 917-921.	2.3	9
112	Epidemiology of Acute Kidney Injury among Patients Receiving Concomitant Vancomycin and Piperacillin-Tazobactam: Opportunities for Antimicrobial Stewardship. Antimicrobial Agents and Chemotherapy, 2016, 60, 3743-3750.	3.2	53
113	Daptomycin in Combination with Ceftolozane-Tazobactam or Cefazolin against Daptomycin-Susceptible and -Nonsusceptible Staphylococcus aureus in an In Vitro , Hollow-Fiber Model. Antimicrobial Agents and Chemotherapy, 2016, 60, 3970-3975.	3.2	16
114	Evaluation of Pharmacodynamic Interactions Between Telavancin and Aztreonam or Piperacillin/Tazobactam Against Pseudomonas aeruginosa, Escherichia coli and Methicillin-Resistant Staphylococcus aureus. Infectious Diseases and Therapy, 2016, 5, 367-377.	4.0	7
115	Cefazolin and Ertapenem, a Synergistic Combination Used To Clear Persistent Staphylococcus aureus Bacteremia. Antimicrobial Agents and Chemotherapy, 2016, 60, 6609-6618.	3.2	34
116	Daptomycin Improves Outcomes Regardless of Vancomycin MIC in a Propensity-Matched Analysis of Methicillin-Resistant Staphylococcus aureus Bloodstream Infections. Antimicrobial Agents and Chemotherapy, 2016, 60, 5841-5848.	3. 2	58
117	Fosfomycin Enhances the Activity of Daptomycin against Vancomycin-Resistant Enterococci in an <i>In Vitro</i> Pharmacokinetic-Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2016, 60, 5716-5723.	3.2	37
118	Oritavancin Combinations with \hat{l}^2 -Lactams against Multidrug-Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococci. Antimicrobial Agents and Chemotherapy, 2016, 60, 2352-2358.	3.2	23
119	Oritavancin: A New Lipoglycopeptide Antibiotic in the Treatment of Gram-Positive Infections. Infectious Diseases and Therapy, 2016, 5, 1-15.	4.0	76
120	Comparison of outcomes between patients with single versus multiple positive blood cultures for Enterococcus: Infection versus illusion?. American Journal of Infection Control, 2016, 44, 47-49.	2.3	5
121	Sequential Evolution of Vancomycin-Intermediate Resistance Alters Virulence in Staphylococcus aureus: Pharmacokinetic/Pharmacodynamic Targets for Vancomycin Exposure. Antimicrobial Agents and Chemotherapy, 2016, 60, 1584-1591.	3.2	18
122	Time Is of the Essence: The Impact of Delayed Antibiotic Therapy on Patient Outcomes in Hospital-Onset Enterococcal Bloodstream Infections. Clinical Infectious Diseases, 2016, 62, 1242-1250.	5 . 8	99
123	Pneumonia Caused by Methicillin-Resistant Staphylococcus aureus: Does Vancomycin Heteroresistance Matter?. Antimicrobial Agents and Chemotherapy, 2016, 60, 1708-1716.	3.2	35
124	Evaluation of tedizolid against <i>Staphylococcus aureus</i> and enterococci with reduced susceptibility to vancomycin, daptomycin or linezolid. Journal of Antimicrobial Chemotherapy, 2016, 71, 152-155.	3.0	64
125	Comment on: Failure of combination therapy with daptomycin and synergistic ceftriaxone for enterococcal endocarditis. Journal of Antimicrobial Chemotherapy, 2015, 70, 1272-1273.	3.0	1
126	Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA) Pneumonia with Ceftaroline Fosamil in a Patient with Inhalational Thermal Injury. Infectious Diseases and Therapy, 2015, 4, 519-528.	4.0	9

#	Article	IF	CITATIONS
127	Global Antimicrobial Stewardship: Challenges and Successes from Frontline Stewards. Infectious Diseases and Therapy, 2015, 4, 1-3.	4.0	7
128	Dalbavancin and Oritavancin: An Innovative Approach to the Treatment of Gram-Positive Infections. Pharmacotherapy, 2015, 35, 935-948.	2.6	44
129	The Î²â€Łactams Strike Back: Ceftazidimeâ€Avibactam. Pharmacotherapy, 2015, 35, 755-770.	2.6	160
130	Evaluation of Ceftaroline Alone and in Combination against Biofilm-Producing Methicillin-Resistant Staphylococcus aureus with Reduced Susceptibility to Daptomycin and Vancomycin in an <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2015, 59, 4497-4503.	3.2	41
131	Nephrotoxicity Comparison of Two Commercially Available Generic Vancomycin Products. Antimicrobial Agents and Chemotherapy, 2015, 59, 5470-5474.	3.2	16
132	Acute Bacterial Skin and Skin Structure Infections (ABSSSI): Practice Guidelines for Management and Care Transitions in the Emergency Department and Hospital. Journal of Emergency Medicine, 2015, 48, 508-519.	0.7	88
133	Ceftobiprole and ampicillin increase daptomycin susceptibility of daptomycin-susceptible and resistant VRE. Journal of Antimicrobial Chemotherapy, 2015, 70, 489-493.	3.0	35
134	\hat{l}^2 -Lactam combinations with daptomycin provide synergy against vancomycin-resistant <i>Enterococcus faecalis</i> and <i>Enterococcus faecium</i> Journal of Antimicrobial Chemotherapy, 2015, 70, 1738-1743.	3.0	99
135	Examining the Use of Ceftaroline in the Treatment of Streptococcus pneumoniae Meningitis with Reference to Human Cathelicidin LL-37. Antimicrobial Agents and Chemotherapy, 2015, 59, 2428-2431.	3.2	22
136	Telavancin Demonstrates Activity against Methicillin-Resistant Staphylococcus aureus Isolates with Reduced Susceptibility to Vancomycin, Daptomycin, and Linezolid in Broth Microdilution MIC and One-Compartment Pharmacokinetic/Pharmacodynamic Models. Antimicrobial Agents and Chemotherapy, 2015, 59, 5529-5534.	3.2	22
137	Association between Vancomycin Day 1 Exposure Profile and Outcomes among Patients with Methicillin-Resistant Staphylococcus aureus Infective Endocarditis. Antimicrobial Agents and Chemotherapy, 2015, 59, 2978-2985.	3.2	68
138	Impact of the Combination of Daptomycin and Trimethoprim-Sulfamethoxazole on Clinical Outcomes in Methicillin-Resistant Staphylococcus aureus Infections. Antimicrobial Agents and Chemotherapy, 2015, 59, 1969-1976.	3.2	29
139	Î ² -Lactams Enhance Daptomycin Activity against Vancomycin-Resistant Enterococcus faecalis and Enterococcus faecium in <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Models. Antimicrobial Agents and Chemotherapy, 2015, 59, 2842-2848.	3.2	40
140	Dalbavancin: A Novel Lipoglycopeptide Antibiotic with Extended Activity Against Gram-Positive Infections. Infectious Diseases and Therapy, 2015, 4, 245-258.	4.0	78
141	Infective Endocarditis in Adults: Diagnosis, Antimicrobial Therapy, and Management of Complications. Circulation, 2015, 132, 1435-1486.	1.6	2,218
142	Vancomycin plus ceftaroline shows potent in vitro synergy and was successfully utilized to clear persistent daptomycin-non-susceptible MRSA bacteraemia. Journal of Antimicrobial Chemotherapy, 2015, 70, 311-313.	3.0	39
143	The combination of ceftaroline plus daptomycin allows for therapeutic de-escalation and daptomycin sparing against MRSA. Journal of Antimicrobial Chemotherapy, 2015, 70, 505-509.	3.0	36
144	A Review of Novel Combinations of Colistin and Lipopeptide or Glycopeptide Antibiotics for the Treatment of Multidrug-Resistant Acinetobacter baumannii. Infectious Diseases and Therapy, 2014, 3, 69-81.	4.0	22

#	Article	IF	Citations
145	A Novel Approach Utilizing Biofilm Time-Kill Curves To Assess the Bactericidal Activity of Ceftaroline Combinations against Biofilm-Producing Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2014, 58, 2989-2992.	3.2	36
146	Evaluation of the novel combination of daptomycin plus ceftriaxone against vancomycin-resistant enterococci in an in vitro pharmacokinetic/pharmacodynamic simulated endocardial vegetation model. Journal of Antimicrobial Chemotherapy, 2014, 69, 2148-2154.	3.0	53
147	Observation of "Seesaw Effect―with Vancomycin, Teicoplanin, Daptomycin and Ceftaroline in 150 Unique MRSA Strains. Infectious Diseases and Therapy, 2014, 3, 35-43.	4.0	63
148	Antimicrobial Salvage Therapy for Persistent Staphylococcal Bacteremia Using Daptomycin Plus Ceftaroline. Clinical Therapeutics, 2014, 36, 1317-1333.	2.5	151
149	Potent synergy of ceftobiprole plus daptomycin against multiple strains of Staphylococcus aureus with various resistance phenotypes. Journal of Antimicrobial Chemotherapy, 2014, 69, 3006-3010.	3.0	50
150	Evaluation of Ceftaroline, Vancomycin, Daptomycin, or Ceftaroline plus Daptomycin against Daptomycin-Nonsusceptible Methicillin-Resistant Staphylococcus aureus in an <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Model of Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 2014, 58, 3177-3181.	3.2	44
151	Large Retrospective Evaluation of the Effectiveness and Safety of Ceftaroline Fosamil Therapy. Antimicrobial Agents and Chemotherapy, 2014, 58, 2541-2546.	3.2	97
152	Evaluation of Vancomycin Population Susceptibility Analysis Profile as a Predictor of Outcomes for Patients with Infective Endocarditis Due to Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2014, 58, 4636-4641.	3.2	14
153	Impact of Different Antimicrobial Therapies on Clinical and Fiscal Outcomes of Patients with Bacteremia Due to Vancomycin-Resistant Enterococci. Antimicrobial Agents and Chemotherapy, 2014, 58, 3968-3975.	3.2	27
154	Ceftaroline Fosamil for Methicillin-Resistant Staphylococcus aureus Pulmonary Exacerbation in a Pediatric Cystic Fibrosis Patient. Journal of Pediatric Pharmacology and Therapeutics, 2014, 19, 135-140.	0.5	8
155	Letter from the Editor. Infectious Diseases and Therapy, 2013, 2, 81-82.	4.0	0
156	Clinical Outcomes in Patients with Heterogeneous Vancomycin-Intermediate Staphylococcus aureus Bloodstream Infection. Antimicrobial Agents and Chemotherapy, 2013, 57, 4252-4259.	3.2	68
157	Ceftaroline Increases Membrane Binding and Enhances the Activity of Daptomycin against Daptomycin-Nonsusceptible Vancomycin-Intermediate Staphylococcus aureus in a Pharmacokinetic/Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2013, 57, 66-73.	3.2	118
158	Evaluation of Ceftaroline Activity against Heteroresistant Vancomycin-Intermediate Staphylococcus aureus and Vancomycin-Intermediate Methicillin-Resistant S. aureus Strains in an ⟨i⟩In Vitro⟨ i⟩ Pharmacokinetic Pharmacodynamic Model: Exploring the "Seesaw Effect― Antimicrobial Agents and Chemotherapy, 2013, 57, 2664-2668.	3.2	54
159	Evaluation of the Novel Combination of High-Dose Daptomycin plus Trimethoprim-Sulfamethoxazole against Daptomycin-Nonsusceptible Methicillin-Resistant Staphylococcus aureus Using an <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Model of Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 2012, 56, 5709-5714.	3.2	33
160	Evaluation of Standard- and High-Dose Daptomycin versus Linezolid against Vancomycin-Resistant Enterococcus Isolates in an <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Model with Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 2012, 56, 3174-3180.	3.2	92
161	Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus aureus Infections in Adults and Children. Clinical Infectious Diseases, 2011, 52, e18-e55.	5.8	2,673
162	Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus aureus Infections in Adults and Children: Executive Summary. Clinical Infectious Diseases, 2011, 52, 285-292.	5.8	1,448

#	Article	IF	CITATIONS
163	Reply to Cataldo et al. Clinical Infectious Diseases, 2011, 53, 310-310.	5.8	O
164	Vancomycin Therapeutic Guidelines: A Summary of Consensus Recommendations from the Infectious Diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clinical Infectious Diseases, 2009, 49, 325-327.	5.8	702
165	In Vitro Activity of Ceftaroline against Methicillin-Resistant <i>Staphylococcus aureus</i> and Heterogeneous Vancomycin-Intermediate <i>S. aureus</i> in a Hollow Fiber Model. Antimicrobial Agents and Chemotherapy, 2009, 53, 4712-4717.	3.2	72
166	Therapeutic Monitoring of Vancomycin in Adults. Pharmacotherapy, 2009, 29, 1275-1279.	2.6	253
167	Characterization of Vancomycin-Heteroresistant <i>Staphylococcus aureus</i> from the Metropolitan Area of Detroit, Michigan, over a 22-Year Period (1986 to 2007). Journal of Clinical Microbiology, 2008, 46, 2950-2954.	3.9	132
168	Virulence characteristics of community-associated Staphylococcus aureus and in vitro activities of moxifloxacin alone and in combination against community-associated and healthcare-associated meticillin-resistant and -susceptible S. aureus. Journal of Medical Microbiology, 2008, 57, 452-456.	1.8	12
169	Antimicrobial Stewardship. Pharmacotherapy, 2007, 27, 131S-135S.	2.6	12
170	The Pharmacokinetic and Pharmacodynamic Properties of Vancomycin. Clinical Infectious Diseases, 2006, 42, S35-S39.	5.8	610
171	Pharmacodynamics: Relation to antimicrobial resistance. American Journal of Infection Control, 2006, 34, S38-S45.	2.3	53
172	Pharmacodynamics: Relation to Antimicrobial Resistance. American Journal of Medicine, 2006, 119, S37-S44.	1.5	76
173	Community-Associated Methicillin-ResistantStaphylococcus aureus: A Review. Pharmacotherapy, 2005, 25, 74-85.	2.6	104
174	Clinical isolates of Staphylococcus aureus from 1987 and 1989 demonstrating heterogeneous resistance to vancomycin and teicoplanin. Diagnostic Microbiology and Infectious Disease, 2005, 51, 119-125.	1.8	19
175	Daptomycin – a novel antibiotic against Gram-positive pathogens. Expert Opinion on Pharmacotherapy, 2004, 5, 2321-2331.	1.8	65
176	Resistance to Antimicrobial Agents: An Update. Pharmacotherapy, 2004, 24, 203S-215S.	2.6	33
177	Increased Bacterial Resistance: PROTEKT US-An Update. Annals of Pharmacotherapy, 2004, 38, S8-S13.	1.9	9
178	Emergence of Methicillin-Resistant Staphylococcus aureus with Intermediate Glycopeptide Resistance. Drugs, 2001, 61, 1-7.	10.9	115
179	Bactericidal Activities of Two Daptomycin Regimens against Clinical Strains of Glycopeptide Intermediate-Resistant Staphylococcus aureus, Vancomycin-Resistant Enterococcus faecium, and Methicillin-Resistant Staphylococcus aureus Isolates in an In Vitro Pharmacodynamic Model with Simulated Endocardial Vegetations, Antimicrobial Agents and Chemotherapy, 2001, 45, 454-459.	3.2	178
180	Oxazolidinones: new players in the battle against multi-resistant Gram-positive bacteria. Expert Opinion on Emerging Drugs, 2001, 6, 43-55.	1.1	6

Taylor Morrisette

#	Article	IF	CITATION
181	Comparison of a Rabbit Model of Bacterial Endocarditis and an In Vitro Infection Model with Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 2000, 44, 1921-1924.	3.2	38
182	In Vitro Activities of Daptomycin, Vancomycin, Linezolid, and Quinupristin-Dalfopristin against Staphylococci and Enterococci, Including Vancomycin- Intermediate and -Resistant Strains. Antimicrobial Agents and Chemotherapy, 2000, 44, 1062-1066.	3.2	321
183	Comparative In Vitro Activities and Postantibiotic Effects of the Oxazolidinone Compounds Eperezolid (PNU-100592) and Linezolid (PNU-100766) versus Vancomycin against <i>Staphylococcus aureus</i> , Coagulase-Negative Staphylococci, <i>Enterococcus faecalis</i> , and <i>Enterococcus faecium</i> , Antimicrobial Agents and Chemotherapy, 1998, 42, 721-724.	3.2	132
184	Ofloxacin Clinical Pharmacokinetics. Clinical Pharmacokinetics, 1992, 22, 32-46.	3.5	41
185	Inhibition of Drug Metabolism by Quinolone Antibiotics. Clinical Pharmacokinetics, 1988, 15, 194-204.	3.5	75