
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2918362/publications.pdf Version: 2024-02-01

LINZHII REN

#	Article	IF	CITATIONS
1	Porcine TRIM21 Enhances Porcine Circovirus 2 Infection and Host Immune Responses, But Inhibits Apoptosis of PCV2-Infected Cells. Viruses, 2022, 14, 156.	3.3	6
2	Recent Progress on Tick-Borne Animal Diseases of Veterinary and Public Health Significance in China. Viruses, 2022, 14, 355.	3.3	9
3	Porcine Circovirus Type 4 Strains Circulating in China Are Relatively Stable and Have Higher Homology with Mink Circovirus than Other Porcine Circovirus Types. International Journal of Molecular Sciences, 2022, 23, 3288.	4.1	13
4	Differential Transcriptomics Analysis of IPEC-J2 Cells Single or Coinfected With Porcine Epidemic Diarrhea Virus and Transmissible Gastroenteritis Virus. Frontiers in Immunology, 2022, 13, 844657.	4.8	7
5	Porcine circovirus 4 rescued from an infectious clone is replicable and pathogenic in vivo. Transboundary and Emerging Diseases, 2022, 69, .	3.0	24
6	PCV2 and PRV Coinfection Induces Endoplasmic Reticulum Stress via PERK-eIF2α-ATF4-CHOP and IRE1-XBP1-EDEM Pathways. International Journal of Molecular Sciences, 2022, 23, 4479.	4.1	5
7	Coinfection of Porcine Circovirus 2 and Pseudorabies Virus Enhances Immunosuppression and Inflammation through NF-κB, JAK/STAT, MAPK, and NLRP3 Pathways. International Journal of Molecular Sciences, 2022, 23, 4469.	4.1	18
8	Non-structural proteins of bovine viral diarrhea virus. Virus Genes, 2022, 58, 491-500.	1.6	7
9	Advances in Crosstalk between Porcine Circoviruses and Host. Viruses, 2022, 14, 1419.	3.3	9
10	Necessary problems in re-emergence of COVID-19. World Journal of Clinical Cases, 2021, 9, 1-7.	0.8	3
11	Viruses from poultry and livestock pose continuous threats to human beings. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
12	Transmission of SARS-CoV-2 via fomite, especially cold chain, should not be ignored. Proceedings of the United States of America, 2021, 118, .	7.1	32
13	Recent Progress on Exosomes in RNA Virus Infection. Viruses, 2021, 13, 256.	3.3	15
14	Lactiplantibacillus plantarum as a Potential Adjuvant and Delivery System for the Development of SARS-CoV-2 Oral Vaccines. Microorganisms, 2021, 9, 683.	3.6	25
15	Possible Targets of Pan-Coronavirus Antiviral Strategies for Emerging or Re-Emerging Coronaviruses. Microorganisms, 2021, 9, 1479.	3.6	10
16	Brucella melitensis UGPase inhibits the activation of NF-κB by modulating the ubiquitination of NEMO. BMC Veterinary Research, 2021, 17, 289.	1.9	1
17	The Role of Exosome and the ESCRT Pathway on Enveloped Virus Infection. International Journal of Molecular Sciences, 2021, 22, 9060.	4.1	37
18	Recent progress on the mutations of SARS-CoV-2 spike protein and suggestions for prevention and controlling of the pandemic. Infection, Genetics and Evolution, 2021, 93, 104971.	2.3	19

#	Article	IF	CITATIONS
19	Recent Progress on Epidemiology and Pathobiology of Porcine Circovirus 3. Viruses, 2021, 13, 1944.	3.3	14
20	Generation and Evaluation of Recombinant Baculovirus Coexpressing <i>GP5</i> and <i>M</i> Proteins of Porcine Reproductive and Respiratory Syndrome Virus Type 1. Viral Immunology, 2021, 34, 697-707.	1.3	5
21	Genotyping based on complete coding sequences of porcine circovirus type 3 is stable and reliable. Infection, Genetics and Evolution, 2020, 78, 104116.	2.3	9
22	Construction and optimization of Lactobacillus plantarum expression system expressing glycoprotein 5 of porcine reproductive and respiratory syndrome virus. International Journal of Biological Macromolecules, 2020, 143, 112-117.	7.5	6
23	The UTP-glucose-1-phosphate uridylyltransferase of Brucella melitensis inhibits the activation of NF-κB via regulating the bacterial type IV secretion system. International Journal of Biological Macromolecules, 2020, 164, 3098-3104.	7.5	7
24	Current Progress on Host Antiviral Factor IFITMs. Frontiers in Immunology, 2020, 11, 543444.	4.8	13
25	IFITMs of African Green Monkey Can Inhibit Replication of SFTSV but Not MNV <i>In Vitro</i> . Viral Immunology, 2020, 33, 634-641.	1.3	6
26	Recent progress on the diagnosis of 2019 Novel Coronavirus. Transboundary and Emerging Diseases, 2020, 67, 1485-1491.	3.0	58
27	A recombinant Lactobacillus plantarum strain expressing the spike protein of SARS-CoV-2. International Journal of Biological Macromolecules, 2020, 160, 736-740.	7.5	47
28	Genetic evolution analysis of 2019 novel coronavirus and coronavirus from other species. Infection, Genetics and Evolution, 2020, 82, 104285.	2.3	116
29	Antiviral mechanisms of candidate chemical medicines and traditional Chinese medicines for SARS-CoV-2 infection. Virus Research, 2020, 286, 198073.	2.2	35
30	Porcine HMGCR Inhibits Porcine Circovirus Type 2 Infection by Directly Interacting with the Viral Proteins. Viruses, 2019, 11, 544.	3.3	5
31	Recent progress on porcine circovirus type 3. Infection, Genetics and Evolution, 2019, 73, 227-233.	2.3	49
32	Construction, expression and antiviral activity analysis of recombinant adenovirus expressing human IFITM3 in vitro. International Journal of Biological Macromolecules, 2019, 131, 925-932.	7.5	4
33	Development of Whole-Porcine Monoclonal Antibodies with Potent Neutralization Activity against Classical Swine Fever Virus from Single B Cells. ACS Synthetic Biology, 2019, 8, 989-1000.	3.8	10
34	Human cells are permissive for the productive infection of porcine circovirus type 2 in vitro. Scientific Reports, 2019, 9, 5638.	3.3	20
35	Co-Infection of Swine with Porcine Circovirus Type 2 and Other Swine Viruses. Viruses, 2019, 11, 185.	3.3	113
36	Immunogenicity evaluation of inactivated virus and purified proteins of porcine circovirus type 2 in mice. BMC Veterinary Research, 2018, 14, 137.	1.9	8

#	Article	IF	CITATIONS
37	Mink Circovirus Can Infect Minks, Foxes and Raccoon Dogs. Virologica Sinica, 2018, 33, 561-564.	3.0	5
38	Recent trends in click chemistry as a promising technology for virus-related research. Virus Research, 2018, 256, 21-28.	2.2	26
39	Mouse models of porcine circovirus 2 infection. Animal Models and Experimental Medicine, 2018, 1, 23-28.	3.3	10
40	Subculturing cells have no effect on CRISPR/Cas9â€mediated cleavage of UL30 gene in pseudorabies virus. Animal Models and Experimental Medicine, 2018, 1, 74-77.	3.3	1
41	Single particle labeling of RNA virus in live cells. Virus Research, 2017, 237, 14-21.	2.2	2
42	HMGCR inhibits the early stage of PCV2 infection, while PKC enhances the infection at the late stage*. Virus Research, 2017, 229, 41-47.	2.2	5
43	Detection of Kobe-type and Otsu-type <i>Babesia microti</i> in wild rodents in China's Yunnan province. Epidemiology and Infection, 2017, 145, 2704-2710.	2.1	10
44	Porcine circovirus 2 proliferation can be enhanced by stably expressing porcine IL-2 gene in PK-15 cell. Virus Research, 2017, 227, 143-149.	2.2	12
45	Pseudorabies virus can escape from CRISPR-Cas9-mediated inhibition. Virus Research, 2016, 223, 197-205.	2.2	27
46	Expression, purification and antibody preparation of PCV2 Rep and ORF3 proteins. International Journal of Biological Macromolecules, 2016, 86, 277-281.	7.5	11
47	Interactions of porcine circovirus 2 with its hosts. Virus Genes, 2016, 52, 437-444.	1.6	50
48	Live Cell Reporter Systems for Positive-Sense Single Strand RNA Viruses. Applied Biochemistry and Biotechnology, 2016, 178, 1567-1585.	2.9	5
49	Development of a Rapid Method for the Visible Detection of Pork DNA in Halal Products by Loop-Mediated Isothermal Amplification. Food Analytical Methods, 2016, 9, 565-570.	2.6	38
50	Effect of atovastatin treatment on porcine circovirus 2 infection in <scp>BALB</scp> /c mice. Clinical and Experimental Pharmacology and Physiology, 2015, 42, 817-821.	1.9	9
51	Markerless Deletion System for Escherichia coli Using Short Homologous Sequences and Positive–Negative Selectable Cassette. Applied Biochemistry and Biotechnology, 2015, 176, 1472-1481.	2.9	0
52	A dark-to-bright reporter cell for classical swine fever virus infection. Antiviral Research, 2015, 117, 44-51.	4.1	5
53	Inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase increases the expression of interferon-responsive genes. Clinical and Experimental Pharmacology and Physiology, 2014, 41, 950-955.	1.9	5
54	Expression, purification and antibody preparation using different constructs of PCV2 capsid protein. International Journal of Biological Macromolecules, 2014, 67, 289-294.	7.5	16

#	Article	IF	CITATIONS
55	HMG-CoA reductase is negatively associated with PCV2 infection and PCV2-induced apoptotic cell death. Journal of General Virology, 2014, 95, 1330-1337.	2.9	16
56	Analysis of molecular variation in porcine reproductive and respiratory syndrome virus in China between 2007 and 2012. Virologica Sinica, 2014, 29, 183-188.	3.0	6
57	Porcine CD4 promoters and enhancers can direct foreign gene expression in human cells. Biotechnology Letters, 2013, 35, 663-669.	2.2	0
58	Comparative analysis of different methods to enhance porcine circovirus 2 replication. Journal of Virological Methods, 2013, 187, 368-371.	2.1	24
59	Isolation and culture of embryonic stem-like cells from pig nuclear transfer blastocysts of different days. Zygote, 2012, 20, 347-352.	1.1	16
60	Complete Genome Sequence of Porcine Circovirus 2b Strain CC1. Journal of Virology, 2012, 86, 9536-9536.	3.4	24
61	Site-directed mutagenesis and over expression of aroG gene of Escherichia coli K-12. International Journal of Biological Macromolecules, 2012, 51, 915-919.	7.5	9
62	Human MxA protein inhibits the replication of classical swine fever virus. Virus Research, 2011, 156, 151-155.	2.2	22
63	Genetic characterization of food-and-mouth disease virus WFL strain. African Journal of Microbiology Research, 2011, 5, 2661-2666.	0.4	0
64	Comparative analysis of the activity of two promoters in insect cells. African Journal of Biotechnology, 2011, 10, 8930-8941.	0.6	6
65	Construction of a recombinant human FGF1 expression vector for mammary gland-specific expression in human breast cancer cells. Molecular and Cellular Biochemistry, 2011, 354, 39-46.	3.1	10
66	Comparative Proteomic Analyses of Streptococcus suis Serotype 2 Cell Wall-Associated Proteins. Current Microbiology, 2011, 62, 578-588.	2.2	15
67	Molecular characterization of a Chinese variant of the Flury-LEP strain. Virology Journal, 2010, 7, 80.	3.4	2
68	Immunogenicity and protective potential of chimeric virus-like particles containing SARS-CoV-2 spike and H5N1 matrix 1 proteins. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	6