
Michael P Rettig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2917591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood, 2009, 113, 6206-6214.	1.4	456
2	A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood, 2012, 119, 3917-3924.	1.4	347
3	Immune Escape of Relapsed AML Cells after Allogeneic Transplantation. New England Journal of Medicine, 2018, 379, 2330-2341.	27.0	322
4	Impact of Mobilization and Remobilization Strategies on Achieving Sufficient Stem Cell Yields for Autologous Transplantation. Biology of Blood and Marrow Transplantation, 2008, 14, 1045-1056.	2.0	319
5	Rapid mobilization of functional donor hematopoietic cells without G-CSF using AMD3100, an antagonist of the CXCR4/SDF-1 interaction. Blood, 2008, 112, 990-998.	1.4	282
6	An "off-the-shelf―fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia, 2018, 32, 1970-1983.	7.2	282
7	Altered erythrocyte endothelial adherence and membrane phospholipid asymmetry in hereditary hydrocytosis. Blood, 2003, 101, 4625-4627.	1.4	217
8	Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood, 2021, 137, 751-762.	1.4	183
9	BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells. Blood, 2009, 114, 1340-1343.	1.4	153
10	Targeting CD123 in acute myeloid leukemia using a T-cell–directed dual-affinity retargeting platform. Blood, 2016, 127, 122-131.	1.4	148
11	Severe Cytokine-Release Syndrome after T Cell–Replete Peripheral Blood Haploidentical Donor Transplantation Is Associated with Poor Survival and Anti–IL-6 Therapy Is Safe and Well Tolerated. Biology of Blood and Marrow Transplantation, 2016, 22, 1851-1860.	2.0	135
12	Sphingosine-1-phosphate facilitates trafficking of hematopoietic stem cells and their mobilization by CXCR4 antagonists in mice. Blood, 2012, 119, 707-716.	1.4	127
13	Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia. Science Translational Medicine, 2020, 12, .	12.4	117
14	Evaluation of Biochemical Changes During In Vivo Erythrocyte Senescence in the Dog. Blood, 1999, 93, 376-384.	1.4	95
15	Plerixafor, a CXCR4 antagonist for the mobilization of hematopoietic stem cells. Expert Opinion on Biological Therapy, 2008, 8, 1797-1804.	3.1	92
16	Preclinical Development of a Bispecific Antibody that Safely and Effectively Targets CD19 and CD47 for the Treatment of B-Cell Lymphoma and Leukemia. Molecular Cancer Therapeutics, 2018, 17, 1739-1751.	4.1	87
17	TP53 abnormalities correlate with immune infiltration and associate with response to flotetuzumab immunotherapy in AML. Blood Advances, 2020, 4, 5011-5024.	5.2	85
18	Protein Kinase C Activation Induces Phosphatidylserine Exposure on Red Blood Cellsâ€. Biochemistry, 2002, 41, 12562-12567.	2.5	80

#	Article	IF	CITATIONS
19	Gold Nanoclusters Doped with ⁶⁴ Cu for CXCR4 Positron Emission Tomography Imaging of Breast Cancer and Metastasis. ACS Nano, 2016, 10, 5959-5970.	14.6	71
20	Co-evolution of tumor and immune cells during progression of multiple myeloma. Nature Communications, 2021, 12, 2559.	12.8	68
21	Mobilization of allogeneic peripheral blood stem cell donors with intravenous plerixafor mobilizes a unique graft. Blood, 2017, 129, 2680-2692.	1.4	66
22	Factors affecting human T cell engraftment, trafficking, and associated xenogeneic graft-vs-host disease in NOD/SCID β2mnull mice. Experimental Hematology, 2007, 35, 1823-1838.	0.4	64
23	Radionuclides transform chemotherapeutics into phototherapeutics for precise treatment of disseminated cancer. Nature Communications, 2018, 9, 275.	12.8	59
24	Targeting CXCR4 in AML and ALL. Frontiers in Oncology, 2020, 10, 1672.	2.8	57
25	Preclinical Development of CD38-Targeted [⁸⁹ Zr]Zr-DFO-Daratumumab for Imaging Multiple Myeloma. Journal of Nuclear Medicine, 2018, 59, 216-222.	5.0	50
26	Preliminary Results of a Phase 1 Study of Flotetuzumab, a CD123 x CD3 Bispecific Dart® Protein, in Patients with Relapsed/Refractory Acute Myeloid Leukemia and Myelodysplastic Syndrome. Blood, 2017, 130, 637-637.	1.4	49
27	Continuous blockade of CXCR4 results in dramatic mobilization and expansion of hematopoietic stem and progenitor cells. Blood, 2017, 129, 2939-2949.	1.4	39
28	Ex Vivo and In Vivo Evaluation of Overexpressed VLA-4 in Multiple Myeloma Using LLP2A Imaging Agents. Journal of Nuclear Medicine, 2016, 57, 640-645.	5.0	32
29	Targeting VLA4 integrin and CXCR2 mobilizes serially repopulating hematopoietic stem cells. Journal of Clinical Investigation, 2019, 129, 2745-2759.	8.2	32
30	Transduction and selection of human T cells with novel CD34/thymidine kinase chimeric suicide genes for the treatment of graft-versus-host disease. Molecular Therapy, 2003, 8, 29-41.	8.2	30
31	Bone Marrow Stromal Cells Modulate Mouse ENT1 Activity and Protect Leukemia Cells from Cytarabine Induced Apoptosis. PLoS ONE, 2012, 7, e37203.	2.5	30
32	A long-acting interleukin-7, rhIL-7-hyFc, enhances CAR T cell expansion, persistence, and anti-tumor activity. Nature Communications, 2022, 13, .	12.8	29
33	Bortezomib is a rapid mobilizer of hematopoietic stem cells in mice via modulation of the VCAM-1/VLA-4 axis. Blood, 2014, 124, 2752-2754.	1.4	27
34	Enhanced in utero allogeneic engraftment in mice after mobilizing fetal HSCs by α4β1/7 inhibition. Blood, 2016, 128, 2457-2461.	1.4	26
35	Mobilized peripheral blood: an updated perspective. F1000Research, 2019, 8, 2125.	1.6	26
36	Erythrocyte adhesion is modified by alterations in cellular tonicity and volume. British Journal of Haematology, 2005, 131, 366-377.	2.5	25

3

#	Article	IF	CITATIONS
37	Chapter 2 CXCR4 and Mobilization of Hematopoietic Precursors. Methods in Enzymology, 2009, 460, 57-90.	1.0	24
38	Kinetics of In Vivo Elimination of Suicide Gene-Expressing T Cells Affects Engraftment, Graft-versus-Host Disease, and Graft-versus-Leukemia after Allogeneic Bone Marrow Transplantation. Journal of Immunology, 2004, 173, 3620-3630.	0.8	22
39	Functional and epigenetic phenotypes of humans and mice with DNMT3A Overgrowth Syndrome. Nature Communications, 2021, 12, 4549.	12.8	21
40	68Ga-Galmydar: A PET imaging tracer for noninvasive detection of Doxorubicin-induced cardiotoxicity. PLoS ONE, 2019, 14, e0215579.	2.5	20
41	[18 F]FHBG PET/CT Imaging of CD34-TK75 Transduced Donor T Cells in Relapsed Allogeneic Stem Cell Transplant Patients: Safety and Feasibility. Molecular Therapy, 2015, 23, 1110-1122.	8.2	18
42	VLA4-Targeted Nanoparticles Hijack Cell Adhesion–Mediated Drug Resistance to Target Refractory Myeloma Cells and Prolong Survival. Clinical Cancer Research, 2021, 27, 1974-1986.	7.0	17
43	Phase 1 First-in-Human Trial of AMV564, a Bivalent Bispecific (2x2) CD33/CD3 T-Cell Engager, in Patients with Relapsed/Refractory Acute Myeloid Leukemia (AML). Blood, 2018, 132, 1455-1455.	1.4	17
44	Selinexor combined with cladribine, cytarabine, and filgrastim in relapsed or refractory acute myeloid leukemia. Haematologica, 2020, 105, e404-e407.	3.5	16
45	CS1 CAR-T targeting the distal domain of CS1 (SLAMF7) shows efficacy in high tumor burden myeloma model despite fratricide of CD8+CS1 expressing CAR-T cells. Leukemia, 2022, 36, 1625-1634.	7.2	15
46	How Old Are Dense Red Blood Cells? The Dog's Tale. Blood, 1998, 92, 2590-2591.	1.4	14
47	Targeting CD123 In Leukemic Stem Cells Using Dual Affinity Re-Targeting Molecules (DARTs®). Blood, 2013, 122, 360-360.	1.4	14
48	Flotetuzumab As Salvage Therapy for Primary Induction Failure and Early Relapse Acute Myeloid Leukemia. Blood, 2020, 136, 16-18.	1.4	12
49	Ablation of VLA4 in multiple myeloma cells redirects tumor spread and prolongs survival. Scientific Reports, 2022, 12, 30.	3.3	12
50	Biology of Disease Relapse in Myeloid Disease: Implication for Strategies to Prevent and Treat Disease Relapse After Stem-Cell Transplantation. Journal of Clinical Oncology, 2021, 39, 386-396.	1.6	11
51	Machine learning–based scoring models to predict hematopoietic stem cell mobilization in allogeneic donors. Blood Advances, 2022, 6, 1991-2000.	5.2	11
52	Suicide genes: monitoring cells in patients with a safety switch. Frontiers in Pharmacology, 2014, 5, 241.	3.5	10
53	Antibody-drug conjugates plus Janus kinase inhibitors enable MHC-mismatched allogeneic hematopoietic stem cell transplantation. Journal of Clinical Investigation, 2021, 131, .	8.2	10
54	Combination of dociparstat sodium (DSTAT), a CXCL12/CXCR4 inhibitor, with azacitidine for the treatment of hypomethylating agent refractory AML and MDS. Leukemia Research, 2021, 110, 106713.	0.8	9

#	Article	IF	CITATIONS
55	Effect of pH on the self-association of erythrocyte band 3 in situ. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1515, 72-81.	2.6	8
56	Development of [89Zr]DFO-elotuzumab for immunoPET imaging of CS1 in multiple myeloma. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 1302-1311.	6.4	8
57	Mobilization and Chemosensitization of AML with the CXCR4 Antagonist Plerixafor (AMD3100): A Phase I/II Study of AMD3100+MEC in Patients with Relapsed or Refractory Disease Blood, 2008, 112, 1944-1944.	1.4	8
58	Characterization of Human CD34+ Hematopoietic Stem Cells Following Administration of G-CSF or Plerixafor. Blood, 2008, 112, 3476-3476.	1.4	8
59	ALT-1188: A New CXCR4 Antagonist In Development For Mobilization Of HSPCs. Blood, 2013, 122, 891-891.	1.4	7
60	Selinexor in Combination with Cladribine, Cytarabine and G-CSF for Relapsed or Refractory AML. Blood, 2017, 130, 816-816.	1.4	7
61	A Phase I Study of the Safety and Feasibility of Bortezomib in Combination With G-CSF for Stem Cell Mobilization in Patients With Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e588-e593.	0.4	6
62	AMD3100 Mobilizes Acute Promyelocytic Leukemia Cells from the Bone Marrow into the Peripheral Blood and Sensitizes Leukemia Cells to Chemotherapy Blood, 2005, 106, 246-246.	1.4	6
63	Phase I/II Study of Intravenous Plerixafor Added to a Mobilization Regimen of Granulocyte Colony–Stimulating Factor in Lymphoma Patients Undergoing Autologous Stem Cell Collection. Biology of Blood and Marrow Transplantation, 2017, 23, 1282-1289.	2.0	5
64	lxazomib, an oral proteasome inhibitor, induces rapid mobilization of hematopoietic progenitor cells in mice. Blood, 2018, 131, 2594-2596.	1.4	5
65	3D tissue engineered plasma cultures support leukemic proliferation and induces drug resistance. Leukemia and Lymphoma, 2021, 62, 1-9.	1.3	5
66	Rapid Mobilization of Long Term Repopulating Hematopoietic Stem Cells (HSC) with AMD15057, a Small Molecule Inhibitor of VLA4; Synergism with AMD3100 and G-CSF. Blood, 2008, 112, 615-615.	1.4	5
67	A Phase I/II Study of Chemosensitization with the CXCR4 Antagonist Plerixafor in Relapsed or Refractory AML Blood, 2009, 114, 787-787.	1.4	5
68	Rapid and Prolonged Mobilization of Human CD34+ Hematopoietic Stem Cells Following Intravenous (IV) Administration of Plerixafor. Blood, 2010, 116, 2261-2261.	1.4	5
69	Mobilization of Normal Mouse Progenitors and Acute Promyelocytic Leukemia (APL) Cells with Inhibitors of CXCR4 and VLA-4 in Splenectomized and Unsplenectomized Mice Blood, 2007, 110, 2219-2219.	1.4	4
70	Kinetics of Human and Murine Mobilization of Acute Myeloid Leukemia in Response to AMD3100 Blood, 2007, 110, 867-867.	1.4	4
71	Blinatumomab Consolidation Post Autologous Hematopoietic Stem Cell Transplantation in Patients with Diffuse Large B Cell Lymphoma. Blood, 2020, 136, 3-4.	1.4	4
72	Phenotypic and Functional Analysis of T-Cells Mobilized in HLA-Matched Sibling Donors Following Treatment with the Chemokine Antagonist AMD3100 Blood, 2006, 108, 3001-3001.	1.4	3

#	Article	IF	CITATIONS
73	CiTE antibody for AML. Blood, 2018, 132, 2425-2427.	1.4	2
74	A phase I trial evaluating the effects of plerixafor, G-CSF, and azacitidine for the treatment of myelodysplastic syndromes. Leukemia and Lymphoma, 2021, 62, 1441-1449.	1.3	2
75	CXCR4/SDF-1 Is a Key Regulator for Leukemia Migration and Homing to the BM: Impact of AMD3100 on In Vivo Response to Chemotherapy Blood, 2006, 108, 569-569.	1.4	2
76	Dual-Function Anti-CD47mAbs Induce Tumor Cell Death and Promote Phagocytosis Resulting in Enhanced in Vivo Efficacy. Blood, 2014, 124, 991-991.	1.4	2
77	Phase II Study Evaluating the Safety and Efficacy of BL-8040 for the Mobilization of Donor Hematopoietic Stem and Progenitor Cells for Allogeneic Hematopoietic Cell Transplantation and Phenotypic Characterization of the Leukapheresis Product. Blood, 2018, 132, 118-118.	1.4	2
78	Get Outta Here! Addition of Mobilizing Agents to Conditioning Regimen Improves Donor Engraftment after Allogeneic Hematopoietic Stem Cell Transplantation for Wiskott-Aldrich Syndrome. Biology of Blood and Marrow Transplantation, 2018, 24, 1309-1311.	2.0	1
79	Single-Cell Transcriptomic and Proteomic Diversity in Multiple Myeloma. Blood, 2019, 134, 5531-5531.	1.4	1
80	Phase I Study of Intravenous Plerixafor Added to a Mobilization Regimen of C-CSF In Lymphoma Patients Undergoing Autologous Stem Cell Collection. Blood, 2010, 116, 823-823.	1.4	1
81	Expansion and Maintenance of Hematopoietic Stem and Progenitor Cells in Course of Long-Term Inhibition of CXCR4/CXCL12 Signaling. Blood, 2016, 128, 2648-2648.	1.4	1
82	Kinetics of Hematopoietic Progenitor Cell Mobilization with Cyclophosphamide or Cyclophosphamide Plus AMD3100 Using a Mouse Model Blood, 2005, 106, 5217-5217.	1.4	1
83	Evaluation of the Phenotype and GVHD-Inducing Potential of Splenic T Cells Isolated from G-CSF, AMD3100, or G-CSF and AMD3100 Pretreated Allogeneic Donors Blood, 2005, 106, 5224-5224.	1.4	1
84	Kinetics of Stem Cell and Lymphoid Subset Mobilization in Response to Intravenous (IV) AMD3100 in Mouse and Man Blood, 2007, 110, 1203-1203.	1.4	1
85	Immune Senescence and Exhaustion Correlate with Response to Flotetuzumab, an Investigational CD123×CD3 Bispecific Dart® Molecule, in Acute Myeloid Leukemia. Blood, 2020, 136, 26-28.	1.4	1
86	Flotetuzumab and Other Cellular Immunotherapies Upregulate MHC Class II Expression on Acute Myeloid Leukemia Cells in Vitro and In Vivo. Blood, 2020, 136, 22-23.	1.4	1
87	Modulation of Erythrocyte Adhesion by Changes in Cellular Tonicity and Volume Blood, 2004, 104, 1577-1577.	1.4	Ο
88	A Murine Xenograft Model for Human T Cell Mediated Graft Versus Host Disease Blood, 2004, 104, 4977-4977.	1.4	0
89	In Vivo Suicide Gene Therapy of Human T Lymphocytes To Prevent Graft Versus Host Disease in a Murine Xenograft Model Blood, 2004, 104, 4979-4979.	1.4	Ο
90	Inosine Monophosphate Dehydrogenase II Mutant (Thr-333-Ile + Ser-351-Tyr) Does Not Confer Resistance to Mycophenolic Acid In Vivo Blood, 2005, 106, 5226-5226.	1.4	0

#	Article	IF	CITATIONS
91	Naive and Ex Vivo Activated Human T Cells Generate Consistent Engraftment and Lethal Graft-Versus-Host Disease (GvHD) in NOD SCID β 2M Null Mice: A New Xenogeneic Model for GvHD Blood, 2005, 106, 3106-3106.	1.4	0
92	Comparison of the Proliferative Kinetics, GVHD Potential and GCV Sensitivity of Naive and Transduced and Selected Murine T Cells after Allogeneic BMT Blood, 2005, 106, 5257-5257.	1.4	0
93	Forced Expression of the "lY―Mutant Inosine Monophosphate Dehydrogenase II Results in Physiologically Significant Resistance to Mycophenolic Acid In Vitro Blood, 2006, 108, 5480-5480.	1.4	0
94	In Vivo Bioluminescence Imaging (BLI) and Sequential 18F]FHBG microPET Imaging Studies of Human T Cell (huT) Trafficking, Expansion and Xenogeneic Graft-Versus-Host-Disease (XGVHD) Following Different Routes of T Cell Administration Blood, 2006, 108, 5178-5178.	1.4	0
95	Allogeneic Recipients of Ex-Vivo Manipulated Donor T Cells Have Altered Plasma Analyte Profiles Compared to Recipients of Unmanipulated T Cells Blood, 2006, 108, 3227-3227.	1.4	0
96	M2-10B4 Mesenchymal Stromal Cells Confer an In Vitro Protective Effect of Murine mCGPR/+ Acute Promyelocytic Leukemic Cells Against Chemotherapy Blood, 2007, 110, 2844-2844.	1.4	0
97	How Old Are Dense Red Blood Cells? The Dog's Tale. Blood, 1998, 92, 2590-2591.	1.4	0
98	Preclinical Studies of the IAP Antagonist Debio 1143 in Combination with Cytarabine or Doxorubicin in a Mouse Model of AML. Blood, 2014, 124, 5296-5296.	1.4	0
99	Conditioning for Hematopoietic Stem Cell Transplantation Using Antibody-Drug Conjugate Targeting CD45 Permits Engraftment across Immunologic Barriers. Blood, 2018, 132, 2035-2035.	1.4	0
100	Single-Cell Pathway Enrichment and Regulatory Profiling of Multiple Myeloma across Disease Stages. Blood, 2019, 134, 364-364.	1.4	0
101	The Tetraspanin CD53 Protects Hematopoietic Stem Cells Following Cellular Stress through Induction of DREAM Complex-Mediated Quiescence. Blood, 2021, 138, 295-295.	1.4	0
102	Myeloma Cell Associated Therapeutic Protein Discovery Using Single Cell RNA-Seq Data. Blood, 2020, 136, 4-5.	1.4	0
103	<i>TP53</i> Abnormalities Correlate with Immune Infiltration and Associate with Response to Flotetuzumab Immunotherapy in Acute Myeloid Leukemia. Blood, 2020, 136, 3-4.	1.4	0