Alberto Bianco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2917239/publications.pdf

Version: 2024-02-01

27035 14779 17,754 156 58 131 citations h-index g-index papers 165 165 165 24829 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design of a graphene oxide-BODIPY conjugate for glutathione depletion and photodynamic therapy. 2D Materials, 2022, 9, 015038.	2.0	5
2	Graphene oxide activates B cells with upregulation of granzyme B expression: evidence at the single-cell level for its immune-modulatory properties and anticancer activity. Nanoscale, 2022, 14, 333-349.	2.8	9
3	Controlling covalent chemistry on graphene oxide. Nature Reviews Physics, 2022, 4, 247-262.	11.9	78
4	The importance of molecular structure and functionalization of oxo-graphene sheets for gene silencing. Carbon, 2022, , .	5.4	3
5	Carbon science perspective in 2022: Current research and future challenges. Carbon, 2022, 195, 272-291.	5.4	19
6	Multifunctional Carbon Nanodots: Enhanced Nearâ€Infrared Photosensitizing, Photothermal Activity, and Body Clearance. Small Science, 2022, 2, .	5.8	5
7	Self-assembly of amphiphilic amino acid derivatives for biomedical applications. Chemical Society Reviews, 2022, 51, 3535-3560.	18.7	29
8	2D Materials and Primary Human Dendritic Cells: A Comparative Cytotoxicity Study. Small, 2022, 18, e2107652.	5.2	7
9	Electrochemical modification of carbon nanotube fibres. Nanoscale, 2022, 14, 9313-9322.	2.8	2
10	Aromatic Dipeptide Homologue-Based Hydrogels for Photocontrolled Drug Release. Nanomaterials, 2022, 12, 1643.	1.9	10
11	Hazard assessment of abraded thermoplastic composites reinforced with reduced graphene oxide. Journal of Hazardous Materials, 2022, 435, 129053.	6.5	16
12	Mechanics of biosurfactant aided liquid phase exfoliation of 2D materials. Forces in Mechanics, 2022, 8, 100098.	1.3	2
13	Combined Photothermal and Photodynamic Therapy for Cancer Treatment Using a Multifunctional Graphene Oxide. Pharmaceutics, 2022, 14, 1365.	2.0	16
14	Growth of ZIF-8 Nanoparticles <i>In Situ</i> on Graphene Oxide Nanosheets: A Multifunctional Nanoplatform for Combined Ion-Interference and Photothermal Therapy. ACS Nano, 2022, 16, 11428-11443.	7.3	33
15	Nanobiosensor Reports on CDK1 Kinase Activity in Tumor Xenografts in Mice. Small, 2021, 17, 2007177.	5.2	4
16	Gadolinium-Incorporated Carbon Nanodots for <i>T</i> ₁ -Weighted Magnetic Resonance Imaging. ACS Applied Nano Materials, 2021, 4, 1467-1477.	2.4	17
17	Reaction between Graphene Oxide and Intracellular Glutathione Affects Cell Viability and Proliferation. ACS Applied Materials & Interfaces, 2021, 13, 3528-3535.	4.0	24
18	Graphene: A Disruptive Opportunity for COVIDâ€19 and Future Pandemics?. Advanced Materials, 2021, 33, e2007847.	11.1	34

#	Article	IF	Citations
19	How macrophages respond to two-dimensional materials: a critical overview focusing on toxicity. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2021, 56, 333-356.	0.7	15
20	A glutathione responsive nanoplatform made of reduced graphene oxide and MnO2 nanoparticles for photothermal and chemodynamic combined therapy. Carbon, 2021, 178, 783-791.	5.4	41
21	Lateral dimension and amino-functionalization on the balance to assess the single-cell toxicity of graphene on fifteen immune cell types. NanoImpact, 2021, 23, 100330.	2.4	8
22	Targeting B Lymphocytes Using Proteinâ€Functionalized Graphene Oxide. Advanced NanoBiomed Research, 2021, 1, 2100060.	1.7	3
23	Recent Advances in 2D Materialâ€Mediated Immunoâ€Combined Cancer Therapy. Small, 2021, 17, e2102557.	5.2	25
24	Boron Nitride Nanosheets Can Induce Water Channels Across Lipid Bilayers Leading to Lysosomal Permeabilization. Advanced Materials, 2021, 33, e2103137.	11.1	15
25	Covalent double functionalization of graphene oxide for proton conductive and redox-active functions. Applied Materials Today, 2021, 24, 101120.	2.3	14
26	The impact of graphene oxide sheet lateral dimensions on their pharmacokinetic and tissue distribution profiles in mice. Journal of Controlled Release, 2021, 338, 330-340.	4.8	19
27	Biodegradation of graphene materials catalyzed by human eosinophil peroxidase. Faraday Discussions, 2021, 227, 189-203.	1.6	30
28	A Flexible Method for Covalent Double Functionalization of Graphene Oxide. Angewandte Chemie - International Edition, 2020, 59, 1542-1547.	7.2	52
29	Hybrid Interfaces Made of Nanotubes and Backbone-Altered Dipeptides Tune Neuronal Network Architecture. ACS Chemical Neuroscience, 2020, 11, 162-172.	1.7	5
30	A Flexible Method for Covalent Double Functionalization of Graphene Oxide. Angewandte Chemie, 2020, 132, 1558-1563.	1.6	9
31	Neutron Activated ¹⁵³ Sm Sealed in Carbon Nanocapsules for <i>in Vivo</i> Imaging and Tumor Radiotherapy. ACS Nano, 2020, 14, 129-141.	7. 3	37
32	A closer look at the genotoxicity of graphene based materials. JPhys Materials, 2020, 3, 014007.	1.8	10
33	Toxicological evaluation of highly water dispersible few-layer graphene inÂvivo. Carbon, 2020, 170, 347-360.	5.4	15
34	Hard Nanomaterials in Time of Viral Pandemics. ACS Nano, 2020, 14, 9364-9388.	7.3	76
35	Degradation of Structurally Defined Graphene Nanoribbons by Myeloperoxidase and the Photoâ€Fenton Reaction. Angewandte Chemie, 2020, 132, 18673-18679.	1.6	1
36	Two-Dimensional Material-Based Biosensors for Virus Detection. ACS Sensors, 2020, 5, 3739-3769.	4.0	73

#	Article	IF	CITATIONS
37	Degradation-by-design: how chemical functionalization enhances the biodegradability and safety of 2D materials. Chemical Society Reviews, 2020, 49, 6224-6247.	18.7	61
38	Is carboxylation an efficient method for graphene oxide functionalization?. Nanoscale Advances, 2020, 2, 4085-4092.	2.2	26
39	Comparative Effects of Graphene and Molybdenum Disulfide on Human Macrophage Toxicity. Small, 2020, 16, e2002194.	5.2	30
40	Nose-to-Brain Translocation and Cerebral Biodegradation of Thin Graphene Oxide Nanosheets. Cell Reports Physical Science, 2020, 1, 100176.	2.8	10
41	Partial Reversibility of the Cytotoxic Effect Induced by Graphene-Based Materials in Skin Keratinocytes. Nanomaterials, 2020, 10, 1602.	1.9	8
42	Innenrýcktitelbild: Rational Chemical Multifunctionalization of Graphene Interface Enhances Targeted Cancer Therapy (Angew. Chem. 33/2020). Angewandte Chemie, 2020, 132, 14267-14267.	1.6	0
43	Intracerebral Injection of Graphene Oxide Nanosheets Mitigates Microglial Activation Without Inducing Acute Neurotoxicity: A Pilot Comparison to Other Nanomaterials. Small, 2020, 16, e2004029.	5.2	19
44	Graphene, other carbon nanomaterials and the immune system: toward nanoimmunity-by-design. JPhys Materials, 2020, 3, 034009.	1.8	29
45	Sizeâ€Dependent Pulmonary Impact of Thin Graphene Oxide Sheets in Mice: Toward Safeâ€byâ€Design. Advanced Science, 2020, 7, 1903200.	5.6	44
46	Kinetics of 1H–13C multiple-contact cross-polarization as a powerful tool to determine the structure and dynamics of complex materials: application to graphene oxide. Physical Chemistry Chemical Physics, 2020, 22, 12209-12227.	1.3	14
47	Singleâ€Cell Analysis: Toward Highâ€Dimensional Singleâ€Cell Analysis of Graphene Oxide Biological Impact: Tracking on Immune Cells by Singleâ€Cell Mass Cytometry (Small 21/2020). Small, 2020, 16, 2070117.	5.2	3
48	Carbon Nanomaterials Applied for the Treatment of Inflammatory Diseases: Preclinical Evidence. Advanced Therapeutics, 2020, 3, 2000051.	1.6	17
49	Controlled functionalization of carbon nanodots for targeted intracellular production of reactive oxygen species. Nanoscale Horizons, 2020, 5, 1240-1249.	4.1	36
50	Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nature Nanotechnology, 2020, 15, 164-166.	15.6	69
51	Degradation of Structurally Defined Graphene Nanoribbons by Myeloperoxidase and the Photoâ€Fenton Reaction. Angewandte Chemie - International Edition, 2020, 59, 18515-18521.	7.2	23
52	Few Layer Graphene Does Not Affect Cellular Homeostasis of Mouse Macrophages. Nanomaterials, 2020, 10, 228.	1.9	15
53	Strategies for the Controlled Covalent Double Functionalization of Graphene Oxide. Chemistry - A European Journal, 2020, 26, 6591-6598.	1.7	27
54	Neutron-irradiated antibody-functionalised carbon nanocapsules for targeted cancer radiotherapy. Carbon, 2020, 162, 410-422.	5.4	18

#	Article	IF	Citations
55	Carbon science perspective in 2020: Current research and future challenges. Carbon, 2020, 161, 373-391.	5.4	77
56	Synthesis and Characterization of Adamantaneâ€Containing Heteropeptides with a Chirality Switch. European Journal of Organic Chemistry, 2020, 2020, 815-820.	1.2	0
57	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	2.0	333
58	Toward Highâ€Dimensional Singleâ€Cell Analysis of Graphene Oxide Biological Impact: Tracking on Immune Cells by Singleâ€Cell Mass Cytometry. Small, 2020, 16, 2000123.	5.2	10
59	Rational Chemical Multifunctionalization of Graphene Interface Enhances Targeted Cancer Therapy. Angewandte Chemie, 2020, 132, 14138-14143.	1.6	10
60	Rational Chemical Multifunctionalization of Graphene Interface Enhances Targeted Cancer Therapy. Angewandte Chemie - International Edition, 2020, 59, 14034-14039.	7.2	25
61	Stimulation of bone formation by monocyte-activator functionalized graphene oxide <i>in vivo</i> . Nanoscale, 2019, 11, 19408-19421.	2.8	32
62	A Straightforward Approach to Multifunctional Graphene. Chemistry - A European Journal, 2019, 25, 13218-13223.	1.7	12
63	A Biodegradable Multifunctional Graphene Oxide Platform for Targeted Cancer Therapy. Advanced Functional Materials, 2019, 29, 1901761.	7.8	54
64	Chemical Functionalization of Nanodiamonds: Opportunities and Challenges Ahead. Angewandte Chemie, 2019, 131, 18084-18095.	1.6	8
65	Improved Biocompatibility of Aminoâ€Functionalized Graphene Oxide in <i>Caenorhabditis elegans</i> Small, 2019, 15, e1902699.	5.2	22
66	"Ultramixing― A Simple and Effective Method To Obtain Controlled and Stable Dispersions of Graphene Oxide in Cell Culture Media. ACS Applied Materials & Dispersions (11, 7695-7702).	4.0	33
67	Chemical Functionalization of Nanodiamonds: Opportunities and Challenges Ahead. Angewandte Chemie - International Edition, 2019, 58, 17918-17929.	7.2	83
68	Few layer graphene does not affect the function and the autophagic activity of primary lymphocytes. Nanoscale, 2019, 11, 10493-10503.	2.8	8
69	Biocompatibility and biodegradability of 2D materials: graphene and beyond. Chemical Communications, 2019, 55, 5540-5546.	2.2	158
70	Protected Amino Acid–Based Hydrogels Incorporating Carbon Nanomaterials for Near-Infrared Irradiation-Triggered Drug Release. ACS Applied Materials & Interfaces, 2019, 11, 13147-13157.	4.0	24
71	Graphene Oxide Flakes Tune Excitatory Neurotransmission in Vivo by Targeting Hippocampal Synapses. Nano Letters, 2019, 19, 2858-2870.	4.5	43
72	Enzymatic Degradation of Graphene Quantum Dots by Human Peroxidases. Small, 2019, 15, e1905405.	5.2	46

#	Article	IF	CITATIONS
73	Physically-triggered nanosystems based on two-dimensional materials for cancer theranostics. Advanced Drug Delivery Reviews, 2019, 138, 211-232.	6.6	56
74	A carbon science perspective in 2018: Current achievements and future challenges. Carbon, 2018, 132, 785-801.	5.4	80
75	Graphene oxide size and oxidation degree govern its supramolecular interactions with siRNA. Nanoscale, 2018, 10, 5965-5974.	2.8	26
76	Covalent chemical functionalization enhances the biodegradation of graphene oxide. 2D Materials, 2018, 5, 015020.	2.0	63
77	Immunological impact of graphene oxide sheets in the abdominal cavity is governed by surface reactivity. Archives of Toxicology, 2018, 92, 3359-3379.	1.9	24
78	Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano, 2018, 12, 10582-10620.	7.3	438
79	Peroxidase mimicking DNAzymes degrade graphene oxide. Nanoscale, 2018, 10, 19316-19321.	2.8	22
80	How can nanotechnology help the fight against breast cancer?. Nanoscale, 2018, 10, 11719-11731.	2.8	42
81	Fluorescent-fipronil: Design and synthesis of a stable conjugate. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2631-2635.	1.0	3
82	Degradation of Singleâ€Layer and Fewâ€Layer Graphene by Neutrophil Myeloperoxidase. Angewandte Chemie, 2018, 130, 11896-11901.	1.6	9
83	Degradation of Single‣ayer and Few‣ayer Graphene by Neutrophil Myeloperoxidase. Angewandte Chemie - International Edition, 2018, 57, 11722-11727.	7.2	135
84	Controlled derivatization of hydroxyl groups of graphene oxide in mild conditions. 2D Materials, 2018, 5, 035037.	2.0	42
85	Enzymatic Biodegradability of Pristine and Functionalized Transition Metal Dichalcogenide MoS ₂ Nanosheets. Advanced Functional Materials, 2017, 27, 1605176.	7.8	109
86	Few‣ayer Graphene Kills Selectively Tumor Cells from Myelomonocytic Leukemia Patients. Angewandte Chemie - International Edition, 2017, 56, 3014-3019.	7.2	59
87	Evaluation of the immunological profile of antibody-functionalized metal-filled single-walled carbon nanocapsules for targeted radiotherapy. Scientific Reports, 2017, 7, 42605.	1.6	11
88	Intracellular degradation of functionalized carbon nanotube/iron oxide hybrids is modulated by iron via Nrf2 pathway. Scientific Reports, 2017, 7, 40997.	1.6	20
89	Fewâ€Layer Graphene Kills Selectively Tumor Cells from Myelomonocytic Leukemia Patients. Angewandte Chemie, 2017, 129, 3060-3065.	1.6	9
90	Direct visualization of carbon nanotube degradation in primary cells by photothermal imaging. Nanoscale, 2017, 9, 4642-4645.	2.8	25

#	Article	IF	Citations
91	Single-cell mass cytometry and transcriptome profiling reveal the impact of graphene on human immune cells. Nature Communications, 2017, 8, 1109.	5.8	111
92	Promises, facts and challenges for graphene in biomedical applications. Chemical Society Reviews, 2017, 46, 4400-4416.	18.7	564
93	Elucidation of siRNA complexation efficiency by graphene oxide and reduced graphene oxide. Carbon, 2017, 122, 643-652.	5.4	29
94	Tumor Stiffening, a Key Determinant of Tumor Progression, is Reversed by Nanomaterial-Induced Photothermal Therapy. Theranostics, 2017, 7, 329-343.	4.6	66
95	Radiolabeling, whole-body single photon emission computed tomography/computed tomography imaging, and pharmacokinetics of carbon nanohorns in mice. International Journal of Nanomedicine, 2016, Volume 11, 3317-3330.	3.3	9
96	Biomedical Uses for 2D Materials Beyond Graphene: Current Advances and Challenges Ahead. Advanced Materials, 2016, 28, 6052-6074.	11.1	335
97	White Graphene undergoes Peroxidase Degradation. Angewandte Chemie, 2016, 128, 5596-5601.	1.6	19
98	Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR. Nanoscale, 2016, 8, 13714-13721.	2.8	136
99	Molecular and Genomic Impact of Large and Small Lateral Dimension Graphene Oxide Sheets on Human Immune Cells from Healthy Donors. Advanced Healthcare Materials, 2016, 5, 276-287.	3.9	90
100	The Effects of Extensive Glomerular Filtration of Thin Graphene Oxide Sheets on Kidney Physiology. ACS Nano, 2016, 10, 10753-10767.	7.3	70
101	Graphene and the immune system: Challenges and potentiality. Advanced Drug Delivery Reviews, 2016, 105, 163-175.	6.6	105
102	Examining the impact of multi-layer graphene using cellular and amphibian models. 2D Materials, 2016, 3, 025009.	2.0	18
103	Designing multimodal carbon nanotubes by covalent multi-functionalization. Nanoscale, 2016, 8, 18596-18611.	2.8	51
104	White Graphene undergoes Peroxidase Degradation. Angewandte Chemie - International Edition, 2016, 55, 5506-5511.	7.2	67
105	Thickness of functionalized graphene oxide sheets plays critical role in tissue accumulation and urinary excretion: A pilot PET/CT study. Applied Materials Today, 2016, 4, 24-30.	2.3	61
106	A comparative study on the enzymatic biodegradability of covalently functionalized double- and multi-walled carbon nanotubes. Carbon, 2016, 100, 367-374.	5.4	30
107	Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy. Nanoscale, 2016, 8, 12626-12638.	2.8	28
108	Controlled Chemical Derivatisation of Carbon Nanotubes with Imaging, Targeting, and Therapeutic Capabilities. Chemistry - A European Journal, 2015, 21, 14886-14892.	1.7	18

#	Article	IF	Citations
109	Selfâ€Assembly of Tyrosine into Controlled Supramolecular Nanostructures. Chemistry - A European Journal, 2015, 21, 11681-11686.	1.7	63
110	Graphene as Cancer Theranostic Tool: Progress and Future Challenges. Theranostics, 2015, 5, 710-723.	4.6	236
111	Tissue distribution and urinary excretion of intravenously administered chemically functionalized graphene oxide sheets. Chemical Science, 2015, 6, 3952-3964.	3.7	116
112	Multifunctional carbon nanomaterial hybrids for magnetic manipulation and targeting. Biochemical and Biophysical Research Communications, 2015, 468, 454-462.	1.0	39
113	Safety concerns on graphene and 2D materials: a Flagship perspective. 2D Materials, 2015, 2, 030201.	2.0	43
114	Dispersibilityâ€Dependent Biodegradation of Graphene Oxide by Myeloperoxidase. Small, 2015, 11, 3985-3994.	5.2	215
115	Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes. Nanoscale, 2015, 7, 15873-15879.	2.8	42
116	Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway. ACS Nano, 2015, 9, 10113-10124.	7.3	143
117	Degradation-by-design: Surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes. Biomaterials, 2015, 72, 20-28.	5.7	61
118	Multifunctional adamantane derivatives as new scaffolds for the multipresentation of bioactive peptides. Journal of Peptide Science, 2015, 21, 330-345.	0.8	44
119	Carbon nanomaterials combined with metal nanoparticles for theranostic applications. British Journal of Pharmacology, 2015, 172, 975-991.	2.7	72
120	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452
121	Carbon nanomaterials as new tools for immunotherapeutic applications. Journal of Materials Chemistry B, 2014, 2, 6144-6156.	2.9	39
122	The perception of nanotechnology and nanomedicine: a worldwide social media study. Nanomedicine, 2014, 9, 1475-1486.	1.7	34
123	Covalent Functionalization of Multiâ€walled Carbon Nanotubes with a Gadolinium Chelate for Efficient <i>T</i> ₁ â€Weighted Magnetic Resonance Imaging. Advanced Functional Materials, 2014, 24, 7173-7186.	7.8	31
124	Immunomodulatory properties of carbon nanotubes are able to compensate immune function dysregulation caused by microgravity conditions. Nanoscale, 2014, 6, 9599-9603.	2.8	17
125	Impact of carbon nanotubes and graphene on immune cells. Journal of Translational Medicine, 2014, 12, 138.	1.8	104
126	Classification Framework for Grapheneâ€Based Materials. Angewandte Chemie - International Edition, 2014, 53, 7714-7718.	7.2	369

#	Article	IF	Citations
127	Adamantane-based dendrons for trimerization of the therapeutic P140 peptide. Biomaterials, 2014, 35, 7553-7561.	5.7	18
128	Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Advanced Drug Delivery Reviews, 2013, 65, 1899-1920.	6.6	206
129	Evidencing the mask effect of graphene oxide: a comparative study on primary human and murine phagocytic cells. Nanoscale, 2013, 5, 11234.	2.8	166
130	How do functionalized carbon nanotubes land on, bind to and pierce through model and plasma membranes. Nanoscale, 2013, 5, 10242.	2.8	61
131	Graphene-based nanomaterials for nanobiotechnology and biomedical applications. Nanomedicine, 2013, 8, 1669-1688.	1.7	99
132	Asbestosâ€ike Pathogenicity of Long Carbon Nanotubes Alleviated by Chemical Functionalization. Angewandte Chemie - International Edition, 2013, 52, 2274-2278.	7.2	153
133	Graphene: Safe or Toxic? The Two Faces of the Medal. Angewandte Chemie - International Edition, 2013, 52, 4986-4997.	7.2	507
134	Functionalized carbon nanotubes as immunomodulator systems. Biomaterials, 2013, 34, 4395-4403.	5.7	109
135	<i>Ex vivo</i> impact of functionalized carbon nanotubes on human immune cells. Nanomedicine, 2012, 7, 231-243.	1.7	71
136	Multifunctionalized carbon nanotubes as advanced multimodal nanomaterials for biomedical applications. Nanotechnology Reviews, 2012, 1, 17-29.	2.6	33
137	Functionalized multiwalled carbon nanotubes as ultrasound contrast agents. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16612-16617.	3.3	139
138	<i>In vivo</i> degradation of functionalized carbon nanotubes after stereotactic administration in the brain cortex. Nanomedicine, 2012, 7, 1485-1494.	1.7	104
139	Degree of Chemical Functionalization of Carbon Nanotubes Determines Tissue Distribution and Excretion Profile. Angewandte Chemie - International Edition, 2012, 51, 6389-6393.	7.2	109
140	Enhancement of anti-inflammatory drug activity by multivalent adamantane-based dendrons. Biomaterials, 2012, 33, 5610-5617.	5.7	27
141	Insertion of Short Amino-Functionalized Single-Walled Carbon Nanotubes into Phospholipid Bilayer Occurs by Passive Diffusion. PLoS ONE, 2012, 7, e40703.	1.1	67
142	HYDRAmers: design, synthesis and characterization of different generation novel Hydra-like dendrons based on multifunctionalized adamantane. Chemical Communications, 2011, 47, 8955.	2.2	24
143	Oxidative biodegradation of single- and multi-walled carbon nanotubes. Nanoscale, 2011, 3, 893-896.	2.8	162
144	Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging. Nanoscale, 2011, 3, 2627.	2.8	110

#	Article	IF	CITATIONS
145	Length-Dependent Retention of Carbon Nanotubes in the Pleural Space of Mice Initiates Sustained Inflammation and Progressive Fibrosis on the Parietal Pleura. American Journal of Pathology, 2011, 178, 2587-2600.	1.9	278
146	Making carbon nanotubes biocompatible and biodegradable. Chemical Communications, 2011, 47, 10182.	2.2	323
147	Fullerene C60 as a multifunctional system for drug and gene delivery. Nanoscale, 2011, 3, 4035.	2.8	263
148	Oneâ€Pot Triple Functionalization of Carbon Nanotubes. Chemistry - A European Journal, 2011, 17, 3222-3227.	1.7	52
149	Potentiometric titration as a straightforward method to assess the number of functional groups on shortened carbon nanotubes. Carbon, 2010, 48, 2447-2454.	5.4	48
150	Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nature Nanotechnology, 2007, 2, 108-113.	15.6	1,035
151	Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3357-3362.	3.3	995
152	Functionalized Carbon Nanotubes Are Non-Cytotoxic and Preserve the Functionality of Primary Immune Cells. Nano Letters, 2006, 6, 3003-3003.	4.5	34
153	Functionalized Carbon Nanotubes for Plasmid DNA Gene Delivery. Angewandte Chemie - International Edition, 2004, 43, 5242-5246.	7.2	977
154	Immunization with Peptide-Functionalized Carbon Nanotubes Enhances Virus-Specific Neutralizing Antibody Responses. Chemistry and Biology, 2003, 10, 961-966.	6.2	492
155	Synthesis, Structural Characterization, and Immunological Properties of Carbon Nanotubes Functionalized with Peptides. Journal of the American Chemical Society, 2003, 125, 6160-6164.	6.6	507
156	Amino acid functionalisation of water soluble carbon nanotubes. Chemical Communications, 2002, , 3050-3051.	2.2	312