Danielle Kamato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2916732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacological Reviews, 2021, 73, 924-967.	16.0	359
2	Transforming growth factor-Î ² signalling: Role and consequences of Smad linker region phosphorylation. Cellular Signalling, 2013, 25, 2017-2024.	3.6	216
3	Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics. , 2019, 196, 15-43.		110
4	Endothelial function and dysfunction: Impact of metformin. , 2018, 192, 150-162.		82
5	GLP-1 receptor agonists (GLP-1RAs): cardiovascular actions and therapeutic potential. International Journal of Biological Sciences, 2021, 17, 2050-2068.	6.4	75
6	Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosis: from pharmacology to pre-clinical and clinical therapeutics. Theranostics, 2021, 11, 4502-4515.	10.0	61
7	Treatment of atherosclerotic plaque: perspectives on theranostics. Journal of Pharmacy and Pharmacology, 2019, 71, 1029-1043.	2.4	56
8	Structure, Function, Pharmacology, and Therapeutic Potential of the G Protein, Gα/q,11. Frontiers in Cardiovascular Medicine, 2015, 2, 14.	2.4	53
9	Animal models for assessing the impact of natural products on the aetiology and metabolic pathophysiology of Type 2 diabetes. Biomedicine and Pharmacotherapy, 2017, 89, 1242-1251.	5.6	51
10	Activatable magnetic resonance nanosensor as a potential imaging agent for detecting and discriminating thrombosis. Nanoscale, 2018, 10, 15103-15115.	5.6	46
11	Targeted Molecular Imaging of Cardiovascular Diseases by Iron Oxide Nanoparticles. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 601-613.	2.4	44
12	Gaq proteins: molecular pharmacology and therapeutic potential. Cellular and Molecular Life Sciences, 2017, 74, 1379-1390.	5.4	43
13	The role of specific Smad linker region phosphorylation in TGF-Î ² mediated expression of glycosaminoglycan synthesizing enzymes in vascular smooth muscle. Cellular Signalling, 2016, 28, 956-966.	3.6	41
14	Lysophosphatidic acid and its receptors: pharmacology and therapeutic potential in atherosclerosis and vascular disease. , 2019, 204, 107404.		38
15	The expansion of GPCR transactivation-dependent signalling to include serine/threonine kinase receptors represents a new cell signalling frontier. Cellular and Molecular Life Sciences, 2015, 72, 799-808.	5.4	37
16	Endothelial Dysfunction and Cardiovascular Disease: History and Analysis of the Clinical Utility of the Relationship. Biomedicines, 2021, 9, 699.	3.2	37
17	Protease activated receptor-1 mediated dual kinase receptor transactivation stimulates the expression of glycosaminoglycan synthesizing genes. Cellular Signalling, 2016, 28, 110-119.	3.6	36
18	(<i>S</i>)-[6]-Gingerol inhibits TGF-β-stimulated biglycan synthesis but not glycosaminoglycan hyperelongation in human vascular smooth muscle cells. Journal of Pharmacy and Pharmacology, 2013, 65, 1026-1036.	2.4	35

DANIELLE KAMATO

#	Article	IF	CITATIONS
19	Smad linker region phosphorylation is a signalling pathway in its own right and not only a modulator of canonical TGF-β signalling. Cellular and Molecular Life Sciences, 2020, 77, 243-251.	5.4	34
20	Transforming growth factor–β1 mediated CHST11 and CHSY1 mRNA expression is ROS dependent in vascular smooth muscle cells. Journal of Cell Communication and Signaling, 2019, 13, 225-233.	3.4	33
21	Cell biology of Smad2/3 linker region phosphorylation in vascular smooth muscle. Clinical and Experimental Pharmacology and Physiology, 2012, 39, 661-667.	1.9	31
22	The Role of Toll-like Receptors in Atherothrombotic Cardiovascular Disease. ACS Pharmacology and Translational Science, 2020, 3, 457-471.	4.9	27
23	Signalling pathways regulating galactosaminoglycan synthesis and structure in vascular smooth muscle: Implications for lipoprotein binding and atherosclerosis. , 2018, 187, 88-97.		26
24	Flavopiridol Inhibits TGF- <i>β</i> -Stimulated Biglycan Synthesis by Blocking Linker Region Phosphorylation and Nuclear Translocation of Smad2. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 156-164.	2.5	26
25	Transforming growth factor β-mediated site-specific Smad linker region phosphorylation in vascular endothelial cells. Journal of Pharmacy and Pharmacology, 2014, 66, 1722-1733.	2.4	25
26	Therapeutic implications of endothelin and thrombin G-protein-coupled receptor transactivation of tyrosine and serine/threonine kinase cell surface receptors. Journal of Pharmacy and Pharmacology, 2013, 65, 465-473.	2.4	24
27	Thrombin promotes PAI-1 expression and migration in keratinocytes via ERK dependent Smad linker region phosphorylation. Cellular Signalling, 2018, 47, 37-43.	3.6	23
28	Insights into cellular signalling by G protein coupled receptor transactivation of cell surface protein kinase receptors. Journal of Cell Communication and Signaling, 2017, 11, 117-125.	3.4	21
29	Peptidylâ€prolyl isomerases: Functionality and potential therapeutic targets in cardiovascular disease. Clinical and Experimental Pharmacology and Physiology, 2015, 42, 117-124.	1.9	20
30	Individual Smad2 linker region phosphorylation sites determine the expression of proteoglycan and glycosaminoglycan synthesizing genes. Cellular Signalling, 2019, 53, 365-373.	3.6	20
31	Endothelin-1 (ET-1) stimulates carboxy terminal Smad2 phosphorylation in vascular endothelial cells by a mechanism dependent on ET receptors and <i>de novo</i> protein synthesis. Journal of Pharmacy and Pharmacology, 2016, 69, 66-72.	2.4	18
32	ROS directly activates transforming growth factor β type 1 receptor signalling in human vascular smooth muscle cells. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129463.	2.4	18
33	G protein coupled receptors can transduce signals through carboxy terminal and linker region phosphorylation of Smad transcription factors. Life Sciences, 2018, 199, 10-15.	4.3	17
34	Mechanisms of PAR-1 mediated kinase receptor transactivation: Smad linker region phosphorylation. Journal of Cell Communication and Signaling, 2019, 13, 539-548.	3.4	17
35	Suramin inhibits PDGF-stimulated receptor phosphorylation, proteoglycan synthesis and glycosaminoglycan hyperelongation in human vascular smooth muscle cells. Journal of Pharmacy and Pharmacology, 2013, 65, 1055-1063.	2.4	15
36	Smad2 linker region phosphorylation is an autonomous cell signalling pathway: Implications for multiple disease pathologies. Biomedicine and Pharmacotherapy, 2020, 124, 109854.	5.6	15

DANIELLE KAMATO

#	Article	IF	CITATIONS
37	RNA sequencing to determine the contribution of kinase receptor transactivation to G protein coupled receptor signalling in vascular smooth muscle cells. PLoS ONE, 2017, 12, e0180842.	2.5	14
38	Lysophosphatidic acid receptor 5 transactivation of TGFBR1 stimulates the mRNA expression of proteoglycan synthesizing genes XYLT1 and CHST3. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118848.	4.1	13
39	Curcumin Inhibits Lysophosphatidic Acid Mediated MCP-1 Expression via Blocking ROCK Signalling. Molecules, 2021, 26, 2320.	3.8	13
40	GPCR transactivation signalling in vascular smooth muscle cells: role of NADPH oxidases and reactive oxygen species. Vascular Biology (Bristol, England), 2019, 1, R1-R11.	3.2	13
41	Integrating the GPCR transactivationâ€dependent and biased signalling paradigms in the context of PAR1 signalling. British Journal of Pharmacology, 2016, 173, 2992-3000.	5.4	12
42	Toll-like Receptor 4 Stimulates Gene Expression via Smad2 Linker Region Phosphorylation in Vascular Smooth Muscle Cells. ACS Pharmacology and Translational Science, 2020, 3, 524-534.	4.9	12
43	Atherogenic, fibrotic and glucose utilising actions of glucokinase activators on vascular endothelium and smooth muscle. Cardiovascular Diabetology, 2014, 13, 80.	6.8	10
44	25Years of endothelin research: the next generation. Life Sciences, 2014, 118, 77-86.	4.3	8
45	Evaluation of the potential synergism of imatinib-related poly kinase inhibitors using growth factor stimulated proteoglycan synthesis as a model response. Journal of Pharmacy and Pharmacology, 2016, 68, 368-378.	2.4	8
46	Influence of PEGylated porous silicon nanoparticles on permeation and efflux of an orally administered antibiotic. Materials Today Advances, 2022, 13, 100210.	5.2	7
47	Akt acts as a switch for GPCR transactivation of the TGFâ $\in \hat{I}^2$ receptor type 1. FEBS Journal, 2022, 289, 2642-2656.	4.7	6
48	Endothelin-1 mediated glycosaminoglycan synthesizing gene expression involves NOX-dependent transactivation of the transforming growth factor-β receptor. Molecular and Cellular Biochemistry, 2022, 477, 981-988.	3.1	5
49	Lipopolysaccharide acting via toll-like receptor 4 transactivates the TGF-β receptor in vascular smooth muscle cells. Cellular and Molecular Life Sciences, 2022, 79, 121.	5.4	5
50	Multiple Growth Factors, But Not VEGF, Stimulate Glycosaminoglycan Hyperelongation in Retinal Choroidal Endothelial Cells. International Journal of Biological Sciences, 2016, 12, 1041-1051.	6.4	4
51	Artemisinin inhibits glycosaminoglycan chain synthesizing gene expression but not proliferation of human vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 2020, 532, 239-243.	2.1	2
52	Endothelinâ€1 dependent expression of <scp>GAG</scp> genes involves <scp>NOX</scp> and p38 mediated Smad linker region phosphorylation. Clinical and Experimental Pharmacology and Physiology, 2022, 49, 710-718.	1.9	2
53	YYâ€11, a camel milkâ€derived peptide, inhibits TGFâ€Î²â€mediated atherogenic signaling in human vascular smooth muscle cells. Journal of Food Biochemistry, 2022, 46, e13882.	2.9	1
54	Assessing the Role of Gαq/11 in Cellular Responses: An Analysis of Investigative Tools. Clinical & Experimental Pharmacology, 2014, 04, .	0.3	0

#	Article	IF	CITATIONS
55	Assessing the Role of GÃfÂŽÃ,±q/11 in Cellular Responses: An Analysis of Investigative Tools. Clinical & Experimental Pharmacology, 2014, 04, .	0.3	0