
Robin W Palfreyman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2916444/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-omic characterisation of <i>Streptomyces hygroscopicus</i> NRRL 30439: detailed assessment of its secondary metabolic potential. Molecular Omics, 2022, 18, 226-236.	2.8	5
2	Role of the substrate on Ni inhibition in biological sulfate reduction. Journal of Environmental Management, 2022, 316, 115216.	7.8	0
3	Network Analyses Predict Small RNAs That Might Modulate Gene Expression in the Testis and Epididymis of Bos indicus Bulls. Frontiers in Genetics, 2021, 12, 610116.	2.3	7
4	A Pan-Genome Guided Metabolic Network Reconstruction of Five Propionibacterium Species Reveals Extensive Metabolic Diversity. Genes, 2020, 11, 1115.	2.4	18
5	A snapshot of microbial diversity and function in an undisturbed sugarcane bagasse pile. BMC Biotechnology, 2020, 20, 12.	3.3	12
6	A TetR-Family Protein (CAETHG_0459) Activates Transcription From a New Promoter Motif Associated With Essential Genes for Autotrophic Growth in Acetogens. Frontiers in Microbiology, 2019, 10, 2549.	3.5	12
7	Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB). Metabolic Engineering, 2019, 53, 14-23.	7.0	57
8	From reconstruction to C4 metabolic engineering: A case study for overproduction of polyhydroxybutyrate in bioenergy grasses. Plant Science, 2018, 273, 50-60.	3.6	7
9	RNAâ€5eq Highlights High Clonal Variation in Monoclonal Antibody Producing CHO Cells. Biotechnology Journal, 2018, 13, e1700231.	3.5	28
10	Effect of Plasmid Design and Type of Integration Event on Recombinant Protein Expression in Pichia pastoris. Applied and Environmental Microbiology, 2018, 84, .	3.1	54
11	Maintenance of ATP Homeostasis Triggers Metabolic Shifts in Gas-Fermenting Acetogens. Cell Systems, 2017, 4, 505-515.e5.	6.2	128
12	Improved production of propionic acid using genome shuffling. Biotechnology Journal, 2017, 12, 1600120.	3.5	23
13	Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses. Frontiers in Plant Science, 2016, 7, 1138.	3.6	24
14	Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome, 2016, 4, 36.	11.1	533
15	Systems biology and metabolic modelling unveils limitations to polyhydroxybutyrate accumulation in sugarcane leaves; lessons for <scp>C</scp> ₄ engineering. Plant Biotechnology Journal, 2016, 14, 567-580.	8.3	17
16	Low carbon fuels and commodity chemicals from waste gases – systematic approach to understand energy metabolism in a model acetogen. Green Chemistry, 2016, 18, 3020-3028.	9.0	143
17	Evolutionary Engineering Improves Tolerance for Replacement Jet Fuels in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2015, 81, 3316-3325.	3.1	44
18	Plant Genome-Scale Modeling and Implementation. Methods in Molecular Biology, 2014, 1090, 317-332.	0.9	8

ROBIN W PALFREYMAN

#	Article	IF	CITATIONS
19	Saccharopolyspora erythraea'sgenome is organised in high-order transcriptional regions mediated by targeted degradation at the metabolic switch. BMC Genomics, 2013, 14, 15.	2.8	33
20	Re-annotation of the Saccharopolyspora erythraea genome using a systems biology approach. BMC Genomics, 2013, 14, 699.	2.8	21
21	Transcriptome Sequencing of and Microarray Development for a Helicoverpa zea Cell Line to Investigate In Vitro Insect Cell-Baculovirus Interactions. PLoS ONE, 2012, 7, e36324.	2.5	28
22	Deep sequencing-based transcriptome analysis of Plutella xylostella larvae parasitized by Diadegma semiclausum. BMC Genomics, 2011, 12, 446.	2.8	82
23	AlgaGEM – a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome. BMC Genomics, 2011, 12, S5.	2.8	109
24	AraGEM, a Genome-Scale Reconstruction of the Primary Metabolic Network in Arabidopsis Â. Plant Physiology, 2010, 152, 579-589.	4.8	319
25	C4GEM, a Genome-Scale Metabolic Model to Study C4 Plant Metabolism Â. Plant Physiology, 2010, 154, 1871-1885.	4.8	190