David Wendehenne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2916154/publications.pdf

Version: 2024-02-01

85 papers 9,331 citations

45 h-index 84 g-index

90 all docs

90 docs citations

90 times ranked 7824 citing authors

#	Article	IF	CITATIONS
1	1H, 13C and 15N chemical shift backbone resonance NMR assignment of tobacco calmodulin 2. Biomolecular NMR Assignments, 2022, , 1.	0.8	O
2	Nitric oxideâ€releasing nanomaterials: from basic research to potential biotechnological applications in agriculture. New Phytologist, 2022, 234, 1119-1125.	7.3	21
3	Nitric oxide production and signalling in algae. Journal of Experimental Botany, 2021, 72, 781-792.	4.8	25
4	Nitric oxide synthase in plants—A follow-up of ABR volume 77: Nitric oxide and signaling in plants. Advances in Botanical Research, 2021, 100, 379-395.	1.1	1
5	The chaperoneâ€like protein Cdc48 regulates ubiquitinâ€proteasome system in plants. Plant, Cell and Environment, 2021, 44, 2636-2655.	5 . 7	8
6	Identification of Partner Proteins of the Algae Klebsormidium nitens NO Synthases: Toward a Better Understanding of NO Signaling in Eukaryotic Photosynthetic Organisms. Frontiers in Plant Science, 2021, 12, 797451.	3 . 6	4
7	Recommendations on terminology and experimental best practice associated with plant nitric oxide research. New Phytologist, 2020, 225, 1828-1834.	7.3	56
8	Physiological significance of pedospheric nitric oxide for root growth, development and organismic interactions. Plant, Cell and Environment, 2020, 43, 2336-2354.	5 . 7	18
9	Some Plant Defense Stimulators can induce IL- $1\hat{l}^2$ production in human immune cells in vitro. Toxicology Reports, 2020, 7, 413-420.	3 . 3	O
10	Regulating the regulator: nitric oxide control of postâ€translational modifications. New Phytologist, 2020, 227, 1319-1325.	7.3	91
11	Cross Kingdom Immunity: The Role of Immune Receptors and Downstream Signaling in Animal and Plant Cell Death. Frontiers in Immunology, 2020, 11, 612452.	4.8	12
12	The evolution of nitric oxide signalling diverges between animal and green lineages. Journal of Experimental Botany, 2019, 70, 4355-4364.	4.8	42
13	The chaperone-like protein CDC48 regulates ascorbate peroxidase in tobacco. Journal of Experimental Botany, 2019, 70, 2665-2681.	4.8	12
14	Toward the understanding of the role of CDC48, a major component of the protein quality control, in plant immunity. Plant Science, 2019, 279, 34-44.	3.6	20
15	Nitric oxide synthase in plants: The surprise from algae. Plant Science, 2018, 268, 64-66.	3 . 6	28
16	Analysis of Recombinant Protein S-Nitrosylation Using the Biotin-Switch Technique. Methods in Molecular Biology, 2018, 1747, 131-141.	0.9	2
17	Evolutionary diversification of type-2 HDAC structure, function and regulation in Nicotiana tabacum. Plant Science, 2018, 269, 66-74.	3. 6	7
18	Nitrogen modulation of <i>Medicago truncatula</i> resistance to <i>Aphanomyces euteiches</i> depends on plant genotype. Molecular Plant Pathology, 2018, 19, 664-676.	4.2	16

#	Article	IF	Citations
19	Functional characterization of the chaperonâ€like protein Cdc48 in cryptogeinâ€induced immune response in tobacco. Plant, Cell and Environment, 2017, 40, 491-508.	5.7	24
20	Structure and functions of the chaperone-like p97/CDC48 in plants. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3053-3060.	2.4	18
21	Nitric oxide synthase in plants: Where do we stand?. Nitric Oxide - Biology and Chemistry, 2017, 63, 30-38.	2.7	173
22	Inflammatory Effects of the Plant Protection Product Stifenia (FEN560) on Vertebrates. Frontiers in Public Health, 2017, 5, 74.	2.7	6
23	Cross-Regulation between N Metabolism and Nitric Oxide (NO) Signaling during Plant Immunity. Frontiers in Plant Science, 2016, 7, 472.	3.6	46
24	Electrochemical Detection of Nitric Oxide in Plant Cell Suspensions. Methods in Molecular Biology, 2016, 1424, 127-137.	0.9	4
25	NO Signalling in Plant Immunity. Signaling and Communication in Plants, 2016, , 219-238.	0.7	3
26	The Evolution of HD2 Proteins in Green Plants. Trends in Plant Science, 2016, 21, 1008-1016.	8.8	40
27	Occurrence, structure, and evolution of nitric oxide synthase–like proteins in the plant kingdom. Science Signaling, 2016, 9, re2.	3.6	213
28	The <i>Pseudomonas fluorescens</i> Siderophore Pyoverdine Weakens <i>Arabidopsis thaliana</i> Defense in Favor of Growth in Iron-Deficient Conditions. Plant Physiology, 2016, 171, 675-693.	4.8	131
29	Interplays between nitric oxide and reactive oxygen species in cryptogein signalling. Plant, Cell and Environment, 2015, 38, 331-348.	5.7	54
30	NO signaling in plant immunity: A tale of messengers. Phytochemistry, 2015, 112, 72-79.	2.9	79
31	The Sulfated Laminarin Triggers a Stress Transcriptome before Priming the SA- and ROS-Dependent Defenses during Grapevine's Induced Resistance against Plasmopara viticola. PLoS ONE, 2014, 9, e88145.	2.5	106
32	Typeâ€ <scp>II</scp> histone deacetylases: elusive plant nuclear signal transducers. Plant, Cell and Environment, 2014, 37, 1259-1269.	5.7	24
33	\hat{l}^2 -Aminobutyric Acid (BABA)-Induced Resistance in <i>Arabidopsis thaliana</i> Homeostasis. Molecular Plant-Microbe Interactions, 2014, 27, 1226-1240.	2.6	38
34	Free radical-mediated systemic immunity in plants. Current Opinion in Plant Biology, 2014, 20, 127-134.	7.1	116
35	Protein S-nitrosylation: specificity and identification strategies in plants. Frontiers in Chemistry, 2014, 2, 114.	3.6	91
36	There's More to the Picture Than Meets the Eye: Nitric Oxide Cross Talk with Ca2+ Signaling. Plant Physiology, 2013, 163, 459-470.	4.8	73

#	Article	IF	Citations
37	Arabidopsis thaliana nicotianamine synthase 4 is required for proper response to iron deficiency and to cadmium exposure. Plant Science, 2013, 209, 1-11.	3.6	46
38	Involvement of the glutamate receptor <scp>A</scp> t <scp>GLR</scp> 3.3 in plant defense signaling and resistance to <i><scp>H</scp>yaloperonospora arabidopsidis</i> . Plant Journal, 2013, 76, 466-480.	5.7	102
39	Arginase Induction Represses Gall Development During Clubroot Infection in Arabidopsis. Plant and Cell Physiology, 2012, 53, 901-911.	3.1	52
40	Study of oligogalacturonides-triggered Nitric Oxide (NO) production provokes new questioning about the origin of NO biosynthesis in plants. Plant Signaling and Behavior, 2012, 7, 1031-1033.	2.4	17
41	Protein S-nitrosylation: What's going on in plants?. Free Radical Biology and Medicine, 2012, 53, 1101-1110.	2.9	151
42	SNF1-Related Protein Kinases Type 2 Are Involved in Plant Responses to Cadmium Stress Â. Plant Physiology, 2012, 160, 868-883.	4.8	71
43	Nitric oxide and glutathione impact the expression of iron uptake- and iron transport-related genes as well as the content of metals in A. thalianaplants grown under iron deficiency. Plant Signaling and Behavior, 2012, 7, 1246-1250.	2.4	29
44	Nitric oxide inhibits the ATPase activity of the chaperone-like AAA+ ATPase CDC48, a target for S-nitrosylation in cryptogein signalling in tobacco cells. Biochemical Journal, 2012, 447, 249-260.	3.7	71
45	Involvement of putative glutamate receptors in plant defence signaling and NO production. Biochimie, 2011, 93, 2095-2101.	2.6	69
46	S-nitrosylation: An emerging post-translational protein modification in plants. Plant Science, 2011, 181, 527-533.	3.6	162
47	New frontiers in nitric oxide biology in plant. Plant Science, 2011, 181, 507-508.	3.6	46
48	Changes in Carbohydrate Metabolism in <i>Plasmopara viticola</i> Infected Grapevine Leaves. Molecular Plant-Microbe Interactions, 2011, 24, 1061-1073.	2.6	47
49	The glutaredoxin ATGRXS13 is required to facilitate <i>Botrytis cinerea</i> infection of <i>Arabidopsis thaliana</i> plants. Plant Journal, 2011, 68, 507-519.	5.7	106
50	Typeâ€2 histone deacetylases as new regulators of elicitorâ€induced cell death in plants. New Phytologist, 2011, 192, 127-139.	7.3	68
51	Identification of reference genes suitable for qRT-PCR in grapevine and application for the study of the expression of genes involved in pterostilbene synthesis. Molecular Genetics and Genomics, 2011, 285, 273-285.	2.1	53
52	Type 2 histone deacetylases play a major role in the control of elicitor-induced cell death in tobacco. Plant Signaling and Behavior, 2011, 6, 1865-1867.	2.4	3
53	Glutathione Deficiency of the Arabidopsis Mutant <i>pad2-1</i> Affects Oxidative Stress-Related Events, Defense Gene Expression, and the Hypersensitive Response Â. Plant Physiology, 2011, 157, 2000-2012.	4.8	90
54	β-Aminobutyric Acid Primes an NADPH Oxidase–Dependent Reactive Oxygen Species Production During Grapevine-Triggered Immunity. Molecular Plant-Microbe Interactions, 2010, 23, 1012-1021.	2.6	66

#	Article	IF	CITATIONS
55	Nuclear protein kinases: still enigmatic components in plant cell signalling. New Phytologist, 2010, 185, 355-368.	7.3	19
56	Stimulation of Defense Reactions in <i>Medicago truncatula</i> by Antagonistic Lipopeptides from <i>Paenibacillus</i> sp. Strain B2. Applied and Environmental Microbiology, 2010, 76, 7420-7428.	3.1	16
57	Regulation of <i>Nicotiana tabacum</i> osmotic stress-activated protein kinase and its cellular partner GAPDH by nitric oxide in response to salinity. Biochemical Journal, 2010, 429, 73-83.	3.7	133
58	Nitric Oxide Contributes to Cadmium Toxicity in Arabidopsis by Promoting Cadmium Accumulation in Roots and by Up-Regulating Genes Related to Iron Uptake Â. Plant Physiology, 2009, 149, 1302-1315.	4.8	331
59	NO contributes to cadmium toxicity in <i>Arabidopsis thaliana</i> by mediating an iron deprivation response. Plant Signaling and Behavior, 2009, 4, 252-254.	2.4	15
60	Current view of nitric oxide-responsive genes in plants. Plant Science, 2009, 177, 302-309.	3.6	102
61	Activation of a nuclear-localized SIPK in tobacco cells challenged by cryptogein, an elicitor of plant defence reactions. Biochemical Journal, 2009, 418, 191-200.	3.7	32
62	New Insights into Nitric Oxide Signaling in Plants. Annual Review of Plant Biology, 2008, 59, 21-39.	18.7	739
63	Real-time electrochemical detection of extracellular nitric oxide in tobacco cells exposed to cryptogein, an elicitor of defence responses. Journal of Experimental Botany, 2008, 59, 3407-3414.	4.8	48
64	Nitric Oxide in Plants: Production and Cross-talk with Ca2+ Signaling. Molecular Plant, 2008, 1, 218-228.	8.3	122
65	Nitric oxide signalling in plants: interplays with Ca2+ and protein kinases. Journal of Experimental Botany, 2008, 59, 155-163.	4.8	165
66	Early Responses of Tobacco Suspension Cells to Rhizobacterial Elicitors of Induced Systemic Resistance. Molecular Plant-Microbe Interactions, 2008, 21, 1609-1621.	2.6	125
67	Cryptogein-Induced Anion Effluxes. Plant Signaling and Behavior, 2007, 2, 86-95.	2.4	27
68	Early Signaling Events Induced by Elicitors of Plant Defenses. Molecular Plant-Microbe Interactions, 2006, 19, 711-724.	2.6	509
69	NO-Based Signaling in Plants. Plant Cell Monographs, 2006, , 35-51.	0.4	8
70	Priming: Getting Ready for Battle. Molecular Plant-Microbe Interactions, 2006, 19, 1062-1071.	2.6	1,241
71	Integrated Signaling Network Involving Calcium, Nitric Oxide, and Active Oxygen Species but Not Mitogen-Activated Protein Kinases in BcPG1-Elicited Grapevine Defenses. Molecular Plant-Microbe Interactions, 2006, 19, 429-440.	2.6	144
72	Mechanisms of nitric-oxide-induced increase of free cytosolic Ca2+ concentration in Nicotiana plumbaginifolia cells. Free Radical Biology and Medicine, 2006, 40, 1369-1376.	2.9	132

#	Article	lF	CITATIONS
73	Proteinaceous and oligosaccharidic elicitors induce different calcium signatures in the nucleus of tobacco cells. Cell Calcium, 2005, 38, 527-538.	2.4	122
74	Nitric oxide in plants: the biosynthesis and cell signalling properties of a fascinating molecule. Planta, 2005, 221, 1-4.	3.2	149
75	Analysis of Nitric Oxide Signaling Functions in Tobacco Cells Challenged by the Elicitor Cryptogein. Plant Physiology, 2004, 135, 516-529.	4.8	295
76	Nitric oxide: a new player in plant signalling and defence responses. Current Opinion in Plant Biology, 2004, 7, 449-455.	7.1	475
77	Plant iNOS: conquest of the Holy Grail. Trends in Plant Science, 2003, 8, 465-468.	8.8	21
78	Nitrate Efflux Is an Essential Component of the Cryptogein Signaling Pathway Leading to Defense Responses and Hypersensitive Cell Death in Tobacco. Plant Cell, 2002, 14, 1937-1951.	6.6	131
79	Nitric oxide: Chemistry and bioactivity in animal and plant cells. Studies in Natural Products Chemistry, 2002, , 909-963.	1.8	0
80	Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends in Plant Science, 2001, 6, 177-183.	8.8	528
81	In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant Journal, 2000, 23, 817-824.	5 . 7	356
82	Nitric Oxide Modulates the Activity of Tobacco Aconitase. Plant Physiology, 2000, 122, 573-582.	4.8	207
83	Involvement of plasma membrane proteins in plant defense responses. Analysis of the cryptogein signal transduction in tobacco. Biochimie, 1999, 81, 663-668.	2.6	39
84	Benzothiadiazole, an inducer of plant defenses, inhibits catalase and ascorbate peroxidase. Phytochemistry, 1998, 47, 651-657.	2.9	116
85	Evidence for specific, high-affinity binding sites for a proteinaceous elicitor in tobacco plasma membrane. FEBS Letters, 1995, 374, 203-207.	2.8	92