
Tian Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2915647/publications.pdf Version: 2024-02-01

TIANLI

#	Article	IF	CITATIONS
1	A radiative cooling structural material. Science, 2019, 364, 760-763.	6.0	856
2	Developing fibrillated cellulose as a sustainable technological material. Nature, 2021, 590, 47-56.	13.7	711
3	Graphene Oxideâ€Based Electrode Inks for 3Dâ€Printed Lithiumâ€ion Batteries. Advanced Materials, 2016, 28, 2587-2594.	11.1	590
4	Highly Anisotropic, Highly Transparent Wood Composites. Advanced Materials, 2016, 28, 5181-5187.	11.1	518
5	Scalable and Highly Efficient Mesoporous Woodâ€Based Solar Steam Generation Device: Localized Heat, Rapid Water Transport. Advanced Functional Materials, 2018, 28, 1707134.	7.8	366
6	Highly Compressible, Anisotropic Aerogel with Aligned Cellulose Nanofibers. ACS Nano, 2018, 12, 140-147.	7.3	364
7	Woodâ€Based Nanotechnologies toward Sustainability. Advanced Materials, 2018, 30, 1703453.	11.1	359
8	Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nature Materials, 2019, 18, 608-613.	13.3	343
9	Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Science Advances, 2018, 4, eaar3724.	4.7	336
10	Highâ€Performance Solar Steam Device with Layered Channels: Artificial Tree with a Reversed Design. Advanced Energy Materials, 2018, 8, 1701616.	10.2	255
11	Wood Composite as an Energy Efficient Building Material: Guided Sunlight Transmittance and Effective Thermal Insulation. Advanced Energy Materials, 2016, 6, 1601122.	10.2	228
12	Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy, 2016, 26, 332-339.	8.2	222
13	Ultrahigh Tough, Super Clear, and Highly Anisotropic Nanofiber-Structured Regenerated Cellulose Films. ACS Nano, 2019, 13, 4843-4853.	7.3	174
14	A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Science Advances, 2019, 5, eaau4238.	4.7	148
15	Transparent, Anisotropic Biofilm with Aligned Bacterial Cellulose Nanofibers. Advanced Functional Materials, 2018, 28, 1707491.	7.8	142
16	Clear Wood toward High-Performance Building Materials. ACS Nano, 2019, 13, 9993-10001.	7.3	138
17	Sustainable off-grid desalination of hypersaline waters using Janus wood evaporators. Energy and Environmental Science, 2021, 14, 5347-5357.	15.6	133
18	A Clear, Strong, and Thermally Insulated Transparent Wood for Energy Efficient Windows. Advanced Functional Materials, 2020, 30, 1907511.	7.8	124

Tian Li

#	Article	IF	CITATIONS
19	Scalable, anisotropic transparent paper directly from wood for light management in solar cells. Nano Energy, 2017, 36, 366-373.	8.2	117
20	Solar-assisted fabrication of large-scale, patternable transparent wood. Science Advances, 2021, 7, .	4.7	107
21	Light management in plastic–paper hybrid substrate towards high-performance optoelectronics. Energy and Environmental Science, 2016, 9, 2278-2285.	15.6	103
22	Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3,000 K. Nature Energy, 2018, 3, 148-156.	19.8	96
23	Hydrophobic nanostructured wood membrane for thermally efficient distillation. Science Advances, 2019, 5, eaaw3203.	4.7	81
24	Thermally Conductive Reduced Graphene Oxide Thin Films for Extreme Temperature Sensors. Advanced Functional Materials, 2019, 29, 1901388.	7.8	81
25	A Highly Conductive Cationic Wood Membrane. Advanced Functional Materials, 2019, 29, 1902772.	7.8	79
26	Atmospheric Water Harvesting by Large-Scale Radiative Cooling Cellulose-Based Fabric. Nano Letters, 2022, 22, 2618-2626.	4.5	68
27	Scalable Wood Hydrogel Membrane with Nanoscale Channels. ACS Nano, 2021, 15, 11244-11252.	7.3	60
28	An Energyâ€Efficient, Woodâ€Derived Structural Material Enabled by Pore Structure Engineering towards Building Efficiency. Small Methods, 2020, 4, 1900747.	4.6	53
29	Anisotropic, Mesoporous Microfluidic Frameworks with Scalable, Aligned Cellulose Nanofibers. ACS Applied Materials & Interfaces, 2018, 10, 7362-7370.	4.0	49
30	Structurally Colored Radiative Cooling Cellulosic Films. Advanced Science, 2022, 9, .	5.6	49
31	Dramatic Enhancement of CO ₂ Photoreduction by Biodegradable Lightâ€Management Paper. Advanced Energy Materials, 2018, 8, 1703136.	10.2	29
32	Challenges to the concept of an intermediate band in InAs/GaAs quantum dot solar cells. Applied Physics Letters, 2013, 103, 141113.	1.5	25
33	Strong, Water-Stable Ionic Cable from Bio-Hydrogel. Chemistry of Materials, 2019, 31, 9288-9294.	3.2	24
34	Evolution of subcritical nuclei in nitrogen-alloyed Ge2Sb2Te5. Journal of Applied Physics, 2012, 112, .	1.1	23
35	Belowâ€bandgap absorption in InAs/GaAs selfâ€assembled quantum dot solar cells. Progress in Photovoltaics: Research and Applications, 2015, 23, 997-1002.	4.4	15
36	Enhanced carrier collection efficiency and reduced quantum state absorption by electron doping in self-assembled quantum dot solar cells. Applied Physics Letters, 2015, 106, .	1.5	10

Tian Li

#	Article	IF	CITATIONS
37	Wood Ionic Cable. Small, 2021, 17, e2008200.	5.2	10
38	The Importance of Averaging to Interpret Electron Correlographs of Disordered Materials. Microscopy and Microanalysis, 2014, 20, 627-634.	0.2	9
39	Non-resonant below-bandgap two-photon absorption in quantum dot solar cells. Applied Physics Letters, 2015, 106, .	1.5	9
40	High saturation intensity in InAs/GaAs quantum dot solar cells and impact on the realization of the intermediate band concept at room-temperature. Applied Physics Letters, 2017, 110, 061107.	1.5	8
41	Two forms of nanoscale order in amorphous GexSe1â^'x alloys. Applied Physics Letters, 2013, 103, .	1.5	3
42	Urbach tail in intermediate band InAs/GaAs quantum dot solar cells. , 2014, , .		1
43	Modified Shockley-Queisser limit for quantum dot solar cells. , 2015, , .		1
44	A comparison of bulk and quantum dot GaAs solar cells. , 2012, , .		0
45	Investigation of room temperature non-linear sub-bandgap photocurrent generation in InAs/GaAs quantum dot solar cells. , 2015, , .		Ο