Tomoharu Nakazato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/291489/publications.pdf

Version: 2024-02-01

70 papers

788 citations

394421 19 h-index 25 g-index

70 all docs

70 docs citations

70 times ranked

528 citing authors

#	Article	IF	CITATIONS
1	Plasma physics and laser development for the Fast-Ignition Realization Experiment (FIREX) Project. Nuclear Fusion, 2009, 49, 104024.	3. 5	45
2	Pr3+-doped fluoro-oxide lithium glass as scintillator for nuclear fusion diagnostics. Review of Scientific Instruments, 2009, 80, 113504.	1.3	41
3	Response-time-improved ZnO scintillator by impurity doping. Journal of Crystal Growth, 2011, 318, 788-790.	1.5	34
4	Vacuum ultraviolet luminescence from a micro-pulling-down method grown Nd3+:(La0.9,Ba0.1)F2.9. Journal of Luminescence, 2009, 129, 1629-1631.	3.1	28
5	Temperature dependence of scintillation properties for a hydrothermal-method-grown zinc oxide crystal evaluated by nickel-like silver laser pulses. Journal of the Optical Society of America B: Optical Physics, 2008, 25, B118.	2.1	27
6	Present status of fast ignition realization experiment and inertial fusion energy development. Nuclear Fusion, 2013, 53, 104021.	3 . 5	27
7	Perovskite fluoride crystals as light emitting materials in vacuum ultraviolet region. Optical Materials, 2014, 36, 769-772.	3 . 6	27
8	Hydrothermal-method-grown ZnO single crystal as fast EUV scintillator for future lithography. Journal of Crystal Growth, 2009, 311, 875-877.	1.5	26
9	Phase-matched frequency conversion below 150 nm in KBe_2BO_3F_2. Optics Express, 2016, 24, 17149.	3.4	26
10	Response-time improved hydrothermal-method-grown ZnO scintillator for soft x-ray free-electron laser timing-observation. Review of Scientific Instruments, 2010, 81, 033102.	1.3	25
11	\${hbox {Nd}}^{3+}{hbox {:LaF}}_{3}\$ as a Step-Wise Excited Scintillator for Femtosecond Ultraviolet Pulses. IEEE Transactions on Nuclear Science, 2010, 57, 1208-1210.	2.0	25
12	Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures. Applied Physics Letters, 2009, 94, 232104.	3.3	24
13	Er:LiCAF as Potential Vacuum Ultraviolet Laser Material at 163 nm. IEEE Transactions on Nuclear Science, 2010, 57, 1204-1207.	2.0	24
14	Micro-pulling down method-grown Er3+:LiCaAlF6 as prospective vacuum ultraviolet laser material. Journal of Crystal Growth, 2013, 362, 167-169.	1.5	23
15	Laser Quality Ce ³⁺ :LiCaAlF ₆ Grown by Micro-Pulling-Down Method. Japanese Journal of Applied Physics, 2008, 47, 5605.	1.5	22
16	Doubly excited states of methane produced by photon and electron interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 565-578.	1.5	21
17	Development of Vacuum Ultraviolet Streak Camera System for the Evaluation of Vacuum Ultraviolet Emitting Materials. Japanese Journal of Applied Physics, 2009, 48, 096503.	1.5	21
18	Response Time-Shortened Zinc Oxide Scintillator for Accurate Single-Shot Synchronization of Extreme Ultraviolet Free-Electron Laser and Short-Pulse Laser. Applied Physics Express, 2011, 4, 062701.	2.4	21

#	Article	IF	CITATIONS
19	Birefringence of \hat{l}^2 -BaB2O4 crystal in the terahertz region for parametric device design. Applied Physics Letters, 2008, 92, .	3.3	19
20	Luminescence properties of Nd3+ and Er3+ doped glasses in the VUV region. Optical Materials, 2013, 35, 1962-1964.	3.6	19
21	Custom-Designed Fast-Response Praseodymium-Doped Lithium 6 Fluoro-Oxide Glass Scintillator With Enhanced Cross-Section for Scattered Neutron Originated From Inertial Confinement Fusion. IEEE Transactions on Nuclear Science, 2010, 57, 1426-1429.	2.0	18
22	Note: Light output enhanced fast response and low afterglow L6i glass scintillator as potential down-scattered neutron diagnostics for inertial confinement fusion. Review of Scientific Instruments, 2010, 81, 106105.	1.3	14
23	Numerical simulation of ultraviolet picosecond Ce:LiCAF laser emission by optimized resonator transients. Japanese Journal of Applied Physics, 2014, 53, 062701.	1.5	14
24	Doubly excited states of ammonia produced by photon and electron interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 195204.	1.5	13
25	Response-time improved hydrothermal-method-grown ZnO scintillator for XFEL timing-observation. Optical Materials, 2010, 32, 1305-1308.	3.6	13
26	VUV fluorescence from Nd3+:LuLiF4 by two photon excitation using femtosecond laser. Optical Materials, 2013, 35, 2030-2033.	3.6	12
27	Custom-designed scintillator for laser fusion diagnostics – Pr3+-doped fluoro-phosphate lithium glass scintillator. Optical Materials, 2010, 32, 1393-1396.	3.6	11
28	Fabrication of In-Doped ZnO Scintillator Mounted on a Vacuum Flange. IEEE Transactions on Nuclear Science, 2012, 59, 2290-2293.	2.0	11
29	Excitonic luminescence in two-dimensionally confined layered sulfide oxides. Applied Physics Letters, 2012, 101, 191901.	3.3	10
30	Optical properties of hydrothermal-method-grown ZnO crystal as EUV laser diagnostics material. Journal of Crystal Growth, 2013, 362, 264-267.	1.5	10
31	The electron-energy-loss spectra of methane tagged with Lyman-α photons in the range of doubly excited states. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, 2459-2470.	1.5	9
32	Differential cross sections for the dissociative single and double excitations resulting in H(2p) formation in electron–CH ₄ collisions at 80 eV incident electron energy. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 155208.	1.5	9
33	High spatial resolution ZnO scintillator for an in situ imaging device in EUV region. Optical Materials, 2014, 36, 2012-2015.	3.6	9
34	Amplification of Ultraviolet Femtosecond Pulse by a Micro-Pulling Down Method-Grown Ce:LiCAF Crystal in a Prismatic Cell-Type, Side-Pumping Configuration. Japanese Journal of Applied Physics, 2009, 48, 120213.	1,5	8
35	Intense terahertz emission from undoped GaAs/n-type GaAs andÂlnAs/AlSb structures grown on Si substrates in the transmission-geometry excitation. Applied Physics B: Lasers and Optics, 2011, 103, 825-829.	2.2	8
36	Potential High-Spatial Resolution In-Situ Imaging of Soft X-Ray Laser Pulses With ZnO Crystal. IEEE Transactions on Nuclear Science, 2012, 59, 2294-2297.	2.0	8

#	Article	IF	CITATIONS
37	149.8 nm, the shortest wavelength generated by phase matching in nonlinear crystals. Proceedings of SPIE, $2017, , .$	0.8	8
38	Down-scattered neutron imaging detector for areal density measurement of inertial confinement fusion. Review of Scientific Instruments, 2010, 81, 10D303.	1.3	7
39	Micro-pulling-down-method-grown Ce:LiCAF crystal for side-pumped laser amplifier. Journal of Crystal Growth, 2011, 318, 737-740.	1.5	7
40	Fully Automated Data Acquisition for Laser Production Cyber-Physical System. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-8.	2.9	7
41	Fast-Response and Low-Afterglow Cerium-Doped Lithium 6 Fluoro-Oxide Glass Scintillator for Laser Fusion-Originated Down-Scattered Neutron Detection. IEEE Transactions on Nuclear Science, 2012, 59, 2256-2259.	2.0	6
42	Indium-Doped ZnO Scintillator With 3-Ps Response Time for Accurate Synchronization of Optical and X-Ray Free Electron Laser Pulses. IEEE Transactions on Nuclear Science, 2012, 59, 2298-2300.	2.0	6
43	Electronic States of Trivalent Praseodymium Ion Doped in 20Al(PO3)3–80LiF Glass. Japanese Journal of Applied Physics, 2013, 52, 062402.	1.5	6
44	Evaluation of Soft X-ray Laser with In situ Imaging Device of High Spatial Resolution ZnO Scintillator. Japanese Journal of Applied Physics, 2011, 50, 122202.	1.5	5
45	Two-photon absorption of KBe2BO3F2and CsLiB6O10at 193 nm. Japanese Journal of Applied Physics, 2017, 56, 122601.	1.5	5
46	Evaluation of Soft X-ray Laser withIn situlmaging Device of High Spatial Resolution ZnO Scintillator. Japanese Journal of Applied Physics, 2011, 50, 122202.	1.5	5
47	Vacuum Ultraviolet Fluorescence Spectroscopy of Nd3+:LaF3Using Femtosecond Extreme Ultraviolet Free Electron Laser. Applied Physics Express, 2013, 6, 022401.	2.4	4
48	Spatial Resolution Evaluation of ZnO Scintillator as an In-situ Imaging Device in EUV Region. IEEE Transactions on Nuclear Science, 2014, 61, 462-466.	2.0	4
49	Observation of birefringence in BBO crystals in the terahertz regime. Journal of Crystal Growth, 2009, 311, 895-898.	1.5	3
50	Systematic Study on Ce:LuLiF4as a Fast Scintillator Using Storage Ring Free-Electron Lasers. Japanese Journal of Applied Physics, 2010, 49, 122602.	1.5	3
51	Development of high-power, 6 kHz, single-mode Ti:sapphire laser at 904 nm for generating 193 nm light. Japanese Journal of Applied Physics, 2015, 54, 042702.	1.5	3
52	Terahertz Emission from GaAs Films on Si(100) and Si(111) Substrates Grown by Molecular Beam Epitaxy. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32, 418-425.	2.2	2
53	Amplification of DUV solid-state laser pulse using ArF laser. , 2017, , .		2
54	Differential cross sections for the double excitation in electron-CH ₄ collisions as a function of electron energy-loss and scattering angle. Journal of Physics: Conference Series, 2009, 194, 052023.	0.4	1

#	Article	IF	Citations
55	Investigation of the terahertz emission characteristics of MBE-grown GaAs-based nanostructures. Optical Materials, 2010, 32, 776-779.	3.6	1
56	Angular distribution of atoms emitted from a SrZrO3 target by laser ablation under different laser fluences and oxygen pressures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 400-406.	2.1	1
57	Terahertz birefringence of β-BaB2O4 (BBO) crystal. , 2008, , .		O
58	UV fluorescence of hydrothermal method grown ZnO for fast EUV scintillators. , 2008, , .		0
59	Er:LiCAF as Potential Vacuum Ultraviolet Laser Material at 163 nm., 2009, , .		o
60	Enhanced terahertz emission from GaAs in MBE-grown InAs/GaAs quantum dot structures. , 2009, , .		0
61	ZnO Scintillator Improved Temporal Response for XFEL Timing Observation. , 2010, , .		O
62	Pr doped Li-6 glass scintillator for Inertial Confinement Fusion neutron diagnostics. , 2010, , .		0
63	Observation of Complex Optical Processes in ZnSe under Extreme Optical Excitation from a Kilojoule-Class Nd:Glass Laser. Japanese Journal of Applied Physics, 2010, 49, 062601.	1.5	0
64	Imaging of Radiation Accidents and Radioactive Contamination Using Scintillators. , 0, , .		0
65	X-Ray Imaging by Using ZnO Crystal. The Review of Laser Engineering, 2011, 39, 193-196.	0.0	O
66	Development of Glass Scintillator Material for Measurement of Scattered Neutron Originated from Inertial Confi nement Fusion. The Review of Laser Engineering, 2011, 39, 312-318.	0.0	0
67	Time-Resolved Pump and Probe Experiment for Wide-Gap Semiconductors Using Free Electron Laser and Synchronously-Operated Femtosecond Laser. Japanese Journal of Applied Physics, 2013, 52, 040203.	1.5	0
68	Three-photon Lasing from ZnSe Excited by a kilojoule-class Nd:Glass Laser. , 2009, , .		0
69	Fast Fe-doped ZnO scintillator for accurate synchronization of femtosecond pulses from XFEL and conventional ultrafast laser. , $2010, \dots$		0
70	Temperature Dependence of the Ultraviolet Luminescence of Pr3+-Doped 20Al(PO3)3-80LiF Glass Scintillator. The Review of Laser Engineering, 2017, 45, 181.	0.0	0