
Takashi Nagasawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2914679/publications.pdf Version: 2024-02-01

TAKASHI NACASAWA

#	Article	IF	CITATIONS
1	MDS cells impair osteolineage differentiation of MSCs via extracellular vesicles to suppress normal hematopoiesis. Cell Reports, 2022, 39, 110805.	6.4	10
2	Runx1 and Runx2 inhibit fibrotic conversion of cellular niches for hematopoietic stem cells. Nature Communications, 2022, 13, 2654.	12.8	13
3	Group 2 innate lymphoid cells support hematopoietic recovery under stress conditions. Journal of Experimental Medicine, 2021, 218, .	8.5	29
4	ldentification of CXCL12â€abundant reticular cells in human adult bone marrow. British Journal of Haematology, 2021, 193, 659-668.	2.5	33
5	Prolonged high-intensity exercise induces fluctuating immune responses to herpes simplex virus infection via glucocorticoids. Journal of Allergy and Clinical Immunology, 2021, 148, 1575-1588.e7.	2.9	3
6	Upregulation of VCAM-1 in lymphatic collectors supports dendritic cell entry and rapid migration to lymph nodes in inflammation. Journal of Experimental Medicine, 2021, 218, .	8.5	37
7	Alterations in the spatiotemporal expression of the chemokine receptor CXCR4 in endothelial cells cause failure of hierarchical vascular branching. Developmental Biology, 2021, 477, 70-84.	2.0	4
8	ldentification of microenvironmental niches for hematopoietic stem cells and lymphoid progenitors—bone marrow fibroblastic reticular cells with salient features. International Immunology, 2021, 33, 821-826.	4.0	4
9	A multistate stem cell dynamics maintains homeostasis in mouse spermatogenesis. Cell Reports, 2021, 37, 109875.	6.4	16
10	Chronic viral infections persistently alter marrow stroma and impair hematopoietic stem cell fitness. Journal of Experimental Medicine, 2021, 218, .	8.5	27
11	Cellular Niches for Hematopoietic Stem Cells and Lympho-Hematopoiesis in Bone Marrow During Homeostasis and Blood Cancers. Current Topics in Microbiology and Immunology, 2021, 434, 33-54.	1.1	1
12	Remodeling of light and dark zone follicular dendritic cells governs germinal center responses. Nature Immunology, 2020, 21, 649-659.	14.5	80
13	Dysregulated Expression of the Nuclear Exosome Targeting Complex Component Rbm7 in Nonhematopoietic Cells Licenses the Development of Fibrosis. Immunity, 2020, 52, 542-556.e13.	14.3	33
14	CXCR4 in Tumor Epithelial Cells Mediates Desmoplastic Reaction in Pancreatic Ductal Adenocarcinoma. Cancer Research, 2020, 80, 4058-4070.	0.9	18
15	A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nature Communications, 2020, 11, 332.	12.8	184
16	Transient microglial absence assists postmigratory cortical neurons in proper differentiation. Nature Communications, 2020, 11, 1631.	12.8	35
17	Pathologic angiogenesis in the bone marrow of humanized sickle cell mice is reversed by blood transfusion. Blood, 2020, 135, 2071-2084.	1.4	44
18	Impaired Osteoblastic Differentiation of MSCs Suppresses Normal Hematopoiesis in MDS. Blood, 2020, 136, 17-18.	1.4	0

Τακαςμι Ναgasawa

#	Article	IF	CITATIONS
19	Mesenchymal stromal cells in bone marrow express adiponectin and are efficiently targeted by an adiponectin promoter-driven Cre transgene. International Immunology, 2019, 31, 729-742.	4.0	33
20	Mesenchymal Niche-Specific Expression of Cxcl12 Controls Quiescence of Treatment-Resistant Leukemia Stem Cells. Cell Stem Cell, 2019, 24, 769-784.e6.	11.1	141
21	Competition for Mitogens Regulates Spermatogenic Stem Cell Homeostasis in an Open Niche. Cell Stem Cell, 2019, 24, 79-92.e6.	11.1	105
22	Niches for hematopoietic stem cells and immune cell progenitors. International Immunology, 2019, 31, 5-11.	4.0	35
23	Glucocorticoids Drive Diurnal Oscillations in T Cell Distribution and Responses by Inducing Interleukin-7 Receptor and CXCR4. Immunity, 2018, 48, 286-298.e6.	14.3	118
24	Peripheral PDGFRα+gp38+ mesenchymal cells support the differentiation of fetal liver–derived ILC2. Journal of Experimental Medicine, 2018, 215, 1609-1626.	8.5	85
25	Stem cell niche-specific Ebf3 maintains the bone marrow cavity. Genes and Development, 2018, 32, 359-372.	5.9	110
26	Neutrophils instruct homeostatic and pathological states in naive tissues. Journal of Experimental Medicine, 2018, 215, 2778-2795.	8.5	200
27	A Distinct Subset of Fibroblastic Stromal Cells Constitutes the Cortex-Medulla Boundary Subcompartment of the Lymph Node. Frontiers in Immunology, 2018, 9, 2196.	4.8	23
28	Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature, 2018, 563, 254-258.	27.8	280
29	Quantitative spatial analysis of haematopoiesis-regulating stromal cells in the bone marrow microenvironment by 3D microscopy. Nature Communications, 2018, 9, 2532.	12.8	109
30	Inhibition of stromal cell–derived factor-1α/CXCR4 signaling restores the blood-retina barrier in pericyte-deficient mouse retinas. JCI Insight, 2018, 3, .	5.0	8
31	Role of CXCL12-Expressing Mesenchymal Stromal Cell Niches in Maintaining Treatment-Resistant Leukemia Stem Cells. Blood, 2018, 132, 1291-1291.	1.4	1
32	Numerous niches for hematopoietic stem cells remain empty during homeostasis. Blood, 2017, 129, 2124-2131.	1.4	71
33	Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nature Cell Biology, 2017, 19, 915-927.	10.3	271
34	Hematopoietic Stem Cell Niches Produce Lineage-Instructive Signals to Control Multipotent Progenitor Differentiation. Immunity, 2016, 45, 1219-1231.	14.3	199
35	Granulocyte colony-stimulating factor reprograms bone marrow stromal cells to actively suppress B lymphopoiesis in mice. Blood, 2015, 125, 3114-3117.	1.4	54
36	The critical and specific transcriptional regulator of the microenvironmental niche for hematopoietic stem and progenitor cells. Current Opinion in Hematology, 2015, 22, 330-336.	2.5	16

Takashi Nagasawa

#	Article	IF	CITATIONS
37	CXCL12/SDF-1 and CXCR4. Frontiers in Immunology, 2015, 6, 301.	4.8	83
38	Myeloid Cells Stimulate Their Progenitors in an Emergency. Immunity, 2015, 42, 13-14.	14.3	0
39	CXCR7 Receptor Controls the Maintenance of Subpial Positioning of Cajal–Retzius Cells. Cerebral Cortex, 2015, 25, 3446-3457.	2.9	17
40	Chemokine Signaling Controls Integrity of Radial Glial Scaffold in Developing Spinal Cord and Consequential Proper Position of Boundary Cap Cells. Journal of Neuroscience, 2015, 35, 9211-9224.	3.6	15
41	CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in the dental stem cell niche. Cell and Tissue Research, 2015, 362, 633-642.	2.9	4
42	Phenotypic and Morphological Properties of Germinal Center Dark Zone <i>Cxcl12</i> -Expressing Reticular Cells. Journal of Immunology, 2015, 195, 4781-4791.	0.8	109
43	CXCL12 catches T-ALL at the entrance of the bone marrow. Trends in Immunology, 2015, 36, 504-506.	6.8	1
44	Distinct Contributions By Perivascular Niche Cells in Hematopoietic Stem Cell Maintenance. Blood, 2015, 126, 661-661.	1.4	1
45	A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nature Cell Biology, 2014, 16, 1157-1167.	10.3	346
46	Lhx6 Directly Regulates Arx and CXCR7 to Determine Cortical Interneuron Fate and Laminar Position. Neuron, 2014, 82, 350-364.	8.1	118
47	CXC chemokine ligand 12 (CXCL12) and its receptor CXCR4. Journal of Molecular Medicine, 2014, 92, 433-439.	3.9	136
48	Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation. Nature, 2014, 508, 536-540.	27.8	192
49	Vasculature-Associated Cells Expressing Nestin in Developing Bones Encompass Early Cells in the Osteoblast and Endothelial Lineage. Developmental Cell, 2014, 29, 330-339.	7.0	160
50	Germinal Center Centroblasts Transition to a Centrocyte Phenotype According to a Timed Program and Depend on the Dark Zone for Effective Selection. Immunity, 2013, 39, 912-924.	14.3	224
51	Peripheral Nerve-Derived CXCL12 and VEGF-A Regulate the Patterning of Arterial Vessel Branching in Developing Limb Skin. Developmental Cell, 2013, 24, 359-371.	7.0	122
52	CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature, 2013, 495, 227-230.	27.8	1,119
53	Rhythmic Modulation of the Hematopoietic Niche through Neutrophil Clearance. Cell, 2013, 153, 1025-1035.	28.9	555
54	A novel role for factor VIII and thrombin/PAR1 in regulating hematopoiesis and its interplay with the bone structure. Blood, 2013, 122, 2562-2571.	1.4	38

Τακαςμι Ναgasawa

#	Article	IF	CITATIONS
55	Peyer's Patch Inducer Cells Play a Leading Role in the Formation of B and T Cell Zone Architecture. Journal of Immunology, 2013, 190, 3309-3318.	0.8	12
56	Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. Journal of Experimental Medicine, 2013, 210, 2321-2336.	8.5	190
57	Establishment of a Novel Mouse Model of Ulcerative Colitis with Concomitant Cytomegalovirus Infection. Inflammatory Bowel Diseases, 2013, 19, 1.	1.9	17
58	The Endothelial Antigen ESAM Monitors Hematopoietic Stem Cell Status between Quiescence and Self-Renewal. Journal of Immunology, 2012, 189, 200-210.	0.8	30
59	Trans-mesenteric neural crest cells are the principal source of the colonic enteric nervous system. Nature Neuroscience, 2012, 15, 1211-1218.	14.8	131
60	Constitutive Plasmacytoid Dendritic Cell Migration to the Splenic White Pulp Is Cooperatively Regulated by CCR7- and CXCR4-Mediated Signaling. Journal of Immunology, 2012, 189, 191-199.	0.8	53
61	Spi-B is critical for plasmacytoid dendritic cell function and development. Blood, 2012, 120, 4733-4743.	1.4	85
62	Extracellular matrix protein tenascin-C is required in the bone marrow microenvironment primed for hematopoietic regeneration. Blood, 2012, 119, 5429-5437.	1.4	122
63	Increased Susceptibility to Severe Chronic Liver Damage in CXCR4 Conditional Knock-Out Mice. Digestive Diseases and Sciences, 2012, 57, 2892-2900.	2.3	19
64	Reconstitution of Mouse Spermatogonial Stem Cell Niches in Culture. Cell Stem Cell, 2012, 11, 567-578.	11.1	104
65	Stromal Cell-Derived Factor 1 Regulates the Actin Organization of Chondrocytes and Chondrocyte Hypertrophy. PLoS ONE, 2012, 7, e37163.	2.5	26
66	Bone Marrow Niches for Hematopoietic Stem Cells and Immune Cells. Inflammation and Allergy: Drug Targets, 2012, 11, 201-206.	1.8	86
67	C-X-C receptor type 4 promotes metastasis by activating p38 mitogen-activated protein kinase in myeloid differentiation antigen (Gr-1)-positive cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 302-307.	7.1	85
68	Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells. Trends in Immunology, 2011, 32, 315-320.	6.8	138
69	CXCL12-CXCR4 chemokine signaling is essential for NK-cell development in adult mice. Blood, 2011, 117, 451-458.	1.4	106
70	Emergency Evacuation! Hematopoietic Niches Induce Cell Exit in Infection. Immunity, 2011, 34, 463-465.	14.3	2
71	Isolation and function of mouse tissue resident vascular precursors marked by myelin protein zero. Journal of Experimental Medicine, 2011, 208, 949-960.	8.5	34
72	Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. Journal of Experimental Medicine, 2011, 208, 383-394.	8.5	262

#	Article	IF	CITATIONS
73	The Essential Functions of Adipo-osteogenic Progenitors as the Hematopoietic Stem and Progenitor Cell Niche. Immunity, 2010, 33, 387-399.	14.3	707
74	CXCR4 Is Required for Proper Regional and Laminar Distribution of Cortical Somatostatin-, Calretinin-, and Neuropeptide Y-Expressing GABAergic Interneurons. Cerebral Cortex, 2010, 20, 2810-2817.	2.9	31
75	DOCK180 Is a Rac Activator That Regulates Cardiovascular Development by Acting Downstream of CXCR4. Circulation Research, 2010, 107, 1102-1105.	4.5	46
76	Thymic development beyond β-selection requires phosphatidylinositol 3-kinase activation by CXCR4. Journal of Experimental Medicine, 2010, 207, 247-261.	8.5	143
77	Bone marrow graft-versus-host disease: early destruction of hematopoietic niche after MHC-mismatched hematopoietic stem cell transplantation. Blood, 2010, 115, 5401-5411.	1.4	152
78	The CXCL12 (SDF-1)/CXCR4 Axis Is Essential for the Development of Renal Vasculature. Journal of the American Society of Nephrology: JASN, 2009, 20, 1714-1723.	6.1	149
79	Random Walk Behavior of Migrating Cortical Interneurons in the Marginal Zone: Time-Lapse Analysis in Flat-Mount Cortex. Journal of Neuroscience, 2009, 29, 1300-1311.	3.6	99
80	SDF1/CXCR4 signalling regulates two distinct processes of precerebellar neuronal migration and its depletion leads to abnormal pontine nuclei formation. Development (Cambridge), 2009, 136, 1919-1928.	2.5	62
81	Bone marrow CXCR4 induction by cultivation enhances therapeutic angiogenesis. Cardiovascular Research, 2009, 81, 169-177.	3.8	29
82	Stromal cell–derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis and Rheumatism, 2009, 60, 813-823.	6.7	499
83	Mechanism of primitive duct formation in the pancreas and submandibular glands: a role for SDF-1. BMC Developmental Biology, 2009, 9, 66.	2.1	60
84	New niches for B cells. Nature Immunology, 2008, 9, 345-346.	14.5	11
85	Blockade of CXCL12/CXCR4 Axis Ameliorates Murine Experimental Colitis. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 383-392.	2.5	80
86	Development of plasmacytoid dendritic cells in bone marrow stromal cell niches requires CXCL12-CXCR4 chemokine signaling. Blood, 2007, 110, 4153-4160.	1.4	66
87	The Chemokine CXCL12 and Regulation of Hsc and B Lymphocyte Development in the Bone Marrow Niche. Advances in Experimental Medicine and Biology, 2007, 602, 69-75.	1.6	54
88	Maintenance of the Hematopoietic Stem Cell Pool by CXCL12-CXCR4 Chemokine Signaling in Bone Marrow Stromal Cell Niches. Immunity, 2006, 25, 977-988.	14.3	2,010
89	Reduced retention of radioprotective hematopoietic cells within the bone marrow microenvironment in CXCR4–/– chimeric mice. Blood, 2006, 107, 2243-2251.	1.4	103
90	Microenvironmental niches in the bone marrow required for B-cell development. Nature Reviews Immunology, 2006, 6, 107-116.	22.7	387

Τακαςμι Ναgasawa

#	Article	IF	CITATIONS
91	Adrenomedullin/Cyclic AMP Pathway Induces Notch Activation and Differentiation of Arterial Endothelial Cells From Vascular Progenitors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1977-1984.	2.4	118
92	The role of CXCL12 in the organ-specific process of artery formation. Blood, 2005, 105, 3155-3161.	1.4	89
93	A Cxcl12-Cxcr4 Chemokine Signaling Pathway Defines the Initial Trajectory of Mammalian Motor Axons. Neuron, 2005, 47, 667-679.	8.1	155
94	Cellular Niches Controlling B Lymphocyte Behavior within Bone Marrow during Development. Immunity, 2004, 20, 707-718.	14.3	679
95	Long-Term Hematopoietic Stem Cells Require Stromal Cell-Derived Factor-1 for Colonizing Bone Marrow during Ontogeny. Immunity, 2003, 19, 257-267.	14.3	312
96	A Role of CXC Chemokine Ligand 12/Stromal Cell-Derived Factor-1/Pre-B Cell Growth Stimulating Factor and Its Receptor CXCR4 in Fetal and Adult T Cell Development in Vivo. Journal of Immunology, 2003, 170, 4649-4655.	0.8	154
97	Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1). Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5319-5323.	7.1	295
98	The unique target specificity of a nonpeptide chemokine receptor antagonist: selective blockade of two Th1 chemokine receptors CCR5 and CXCR3. Journal of Leukocyte Biology, 2003, 73, 273-280.	3.3	105
99	CXCR4 Regulates Interneuron Migration in the Developing Neocortex. Journal of Neuroscience, 2003, 23, 5123-5130.	3.6	411
100	Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4227-4232.	7.1	307
101	Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons. Nature Neuroscience, 2002, 5, 719-720.	14.8	220
102	The Earliest Stages of B Cell Development Require a Chemokine Stromal Cell-Derived Factor/Pre-B Cell Growth-Stimulating Factor. Immunity, 2001, 15, 323-334.	14.3	188
103	Role of Chemokine SDFâ€1/PBSF and Its Receptor CXCR4 in Blood Vessel Development. Annals of the New York Academy of Sciences, 2001, 947, 112-116.	3.8	21
104	The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature, 1998, 393, 591-594.	27.8	1,423
105	Large quantity production with extreme convenience of human SDF-1α and SDF-1Î ² by a Sendai virus vector. FEBS Letters, 1998, 425, 105-111.	2.8	16
106	A novel CXC chemokine PBSF/SDF-1 and its receptor CXCR4: their functions in development, hematopoiesis and HIV infection. Seminars in Immunology, 1998, 10, 179-185.	5.6	213
107	A CXC Chemokine SDF-1/PBSF: A Ligand for a HIV Coreceptor, CXCR4. Advances in Immunology, 1998, 71, 211-228.	2.2	39
108	Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9448-9453.	7.1	1,537

#	Article	IF	CITATIONS
109	A Small Molecule CXCR4 Inhibitor that Blocks T Cell Line–tropic HIV-1 Infection. Journal of Experimental Medicine, 1997, 186, 1389-1393.	8.5	391
110	CXCR4/fusin Is Not a Species-specific Barrier in Murine Cells for HIV-1 Entry. Journal of Experimental Medicine, 1997, 185, 1865-1870.	8.5	34
111	Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature, 1996, 382, 635-638.	27.8	2,195
112	Fundamental Properties of Native Bone Marrow Perisinusoidal Mesenchymal Stem Cells. SSRN Electronic Journal, 0, , .	0.4	0