
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2914401/publications.pdf Version: 2024-02-01

STACEV F RENT

#	Article	IF	CITATIONS
1	Modulating the optoelectronic properties of hybrid Mo-thiolate thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	3
2	Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nature Energy, 2022, 7, 94-106.	19.8	336
3	The Importance of Decarbonylation Mechanisms in the Atomic Layer Deposition of Highâ€Quality Ru Films by Zeroâ€Oxidation State Ru(DMBD)(CO) ₃ . Small, 2022, 18, e2105513.	5.2	5
4	Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nature Materials, 2022, 21, 445-454.	13.3	155
5	Methyl-methacrylate based aluminum hybrid film grown via three-precursor molecular layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 023405.	0.9	2
6	Steering CO ₂ hydrogenation toward C–C coupling to hydrocarbons using porous organic polymer/metal interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
7	Tuning Molecular Inhibitors and Aluminum Precursors for the Area-Selective Atomic Layer Deposition of Al ₂ O ₃ . Chemistry of Materials, 2022, 34, 4646-4659.	3.2	15
8	Copper Oxidation Improves Dodecanethiol Blocking Ability in Areaâ€ 5 elective Atomic Layer Deposition. Advanced Materials Interfaces, 2022, 9, .	1.9	2
9	Molecular Layer Deposition of a Hafnium-Based Hybrid Thin Film as an Electron Beam Resist. ACS Applied Materials & Interfaces, 2022, 14, 27140-27148.	4.0	11
10	Understanding and Utilizing Reactive Oxygen Reservoirs in Atomic Layer Deposition of Metal Oxides with Ozone. Chemistry of Materials, 2022, 34, 5584-5597.	3.2	4
11	Elucidating the Reaction Mechanism of Atomic Layer Deposition of Al ₂ O ₃ with a Series of Al(CH ₃) _{<i>x</i>} Cl _{3–<i>x</i>} and Al(C _{<i>y</i>} H _{2<i>y</i>+1}) ₃ Precursors. Journal of the American Chemical Society, 2022, 144, 11757-11766.	6.6	8
12	Electrical resistance of the current collector controls lithium morphology. Nature Communications, 2022, 13, .	5.8	20
13	An X-ray Photoelectron Spectroscopy Primer for Solid Electrolyte Interphase Characterization in Lithium Metal Anodes. ACS Energy Letters, 2022, 7, 2540-2546.	8.8	46
14	Identification of highly active surface iron sites on Ni(OOH) for the oxygen evolution reaction by atomic layer deposition. Journal of Catalysis, 2021, 394, 476-485.	3.1	8
15	Impurity Control in Catalyst Design: The Role of Sodium in Promoting and Stabilizing Co and Co ₂ C for Syngas Conversion. ChemCatChem, 2021, 13, 1186-1194.	1.8	6
16	Understanding Support Effects of ZnOâ€Promoted Co Catalysts for Syngas Conversion to Alcohols Using Atomic Layer Deposition. ChemCatChem, 2021, 13, 770-781.	1.8	4
17	Area-Selective Atomic Layer Deposition on Chemically Similar Materials: Achieving Selectivity on Oxide/Oxide Patterns. Chemistry of Materials, 2021, 33, 513-523.	3.2	31
18	Increased selectivity in area-selective ALD by combining nucleation enhancement and SAM-based inhibition. Journal of Materials Research, 2021, 36, 582-591.	1.2	6

#	Article	IF	CITATIONS
19	Multi-metal coordination polymers grown through hybrid molecular layer deposition. Dalton Transactions, 2021, 50, 4577-4582.	1.6	5
20	Bridging the Synthesis Gap: Ionic Liquids Enable Solvent-Mediated Reaction in Vapor-Phase Deposition. ACS Nano, 2021, 15, 3004-3014.	7.3	5
21	Area-Selective Molecular Layer Deposition of a Silicon Oxycarbide Low- <i>k</i> Dielectric. Chemistry of Materials, 2021, 33, 902-909.	3.2	13
22	Next generation nanopatterning using small molecule inhibitors for area-selective atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	46
23	Role of Precursor Choice on Area-Selective Atomic Layer Deposition. Chemistry of Materials, 2021, 33, 3926-3935.	3.2	30
24	Bridging Thermal Catalysis and Electrocatalysis: Catalyzing CO ₂ Conversion with Carbonâ€Based Materials. Angewandte Chemie - International Edition, 2021, 60, 17472-17480.	7.2	21
25	Bridging Thermal Catalysis and Electrocatalysis: Catalyzing CO 2 Conversion with Carbonâ€Based Materials. Angewandte Chemie, 2021, 133, 17613-17621.	1.6	1
26	Resilient Women and the Resiliency of Science. Chemistry of Materials, 2021, 33, 6585-6588.	3.2	3
27	Tailoring the Surface of Metal Halide Perovskites to Enable the Atomic Layer Deposition of Metal Oxide Contacts. ACS Applied Energy Materials, 2021, 4, 9871-9880.	2.5	4
28	Identifying higher oxygenate synthesis sites in Cu catalysts promoted and stabilized by atomic layer deposited Fe2O3. Journal of Catalysis, 2021, 404, 210-223.	3.1	2
29	Monolayer Support Control and Precise Colloidal Nanocrystals Demonstrate Metal–Support Interactions in Heterogeneous Catalysts. Advanced Materials, 2021, 33, e2104533.	11.1	13
30	Understanding Selectivity in CO2 Hydrogenation to Methanol for MoP Nanoparticle Catalysts Using In Situ Techniques. Catalysts, 2021, 11, 143.	1.6	11
31	Characterizing Self-Assembled Monolayer Breakdown in Area-Selective Atomic Layer Deposition. Langmuir, 2021, 37, 11637-11645.	1.6	15
32	Surface Energy Change of Atomic-Scale Metal Oxide Thin Films by Phase Transformation. ACS Nano, 2020, 14, 676-687.	7.3	10
33	Mechanistic Study of Nucleation Enhancement in Atomic Layer Deposition by Pretreatment with Small Organometallic Molecules. Chemistry of Materials, 2020, 32, 315-325.	3.2	32
34	Enhanced alcohol production over binary Mo/Co carbide catalysts in syngas conversion. Journal of Catalysis, 2020, 391, 446-458.	3.1	12
35	Substrate-Dependent Study of Chain Orientation and Order in Alkylphosphonic Acid Self-Assembled Monolayers for ALD Blocking. Langmuir, 2020, 36, 12849-12857.	1.6	17
36	Revealing and Elucidating ALDâ€Đerived Control of Lithium Plating Microstructure. Advanced Energy Materials, 2020, 10, 2002736.	10.2	37

#	Article	IF	CITATIONS
37	Thermally Activated Reactions of Phenol at the Ge(100)-2 × 1 Surface. Journal of Physical Chemistry C, 2020, 124, 23657-23660.	1.5	9
38	Modified atomic layer deposition of MoS2 thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	14
39	Effect of Multilayer versus Monolayer Dodecanethiol on Selectivity and Pattern Integrity in Area-Selective Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2020, 12, 42226-42235.	4.0	24
40	Effect of Heteroaromaticity on Adsorption of Pyrazine on the Ge(100)-2×1 Surface. Journal of Physical Chemistry C, 2020, 124, 22055-22068.	1.5	3
41	Atomic Layer Deposition of Pt on the Surface Deactivated by Fluorocarbon Implantation: Investigation of the Growth Mechanism. Chemistry of Materials, 2020, 32, 9696-9703.	3.2	8
42	Applications of atomic layer deposition and chemical vapor deposition for perovskite solar cells. Energy and Environmental Science, 2020, 13, 1997-2023.	15.6	102
43	The Molybdenum Oxide Interface Limits the High-Temperature Operational Stability of Unencapsulated Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2349-2360.	8.8	49
44	Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells. Joule, 2020, 4, 1759-1775.	11.7	284
45	Nucleation Effects in the Atomic Layer Deposition of Nickel–Aluminum Oxide Thin Films. Chemistry of Materials, 2020, 32, 1925-1936.	3.2	15
46	Understanding chemical and physical mechanisms in atomic layer deposition. Journal of Chemical Physics, 2020, 152, 040902.	1.2	143
47	Synthesis of a Hybrid Nanostructure of ZnO-Decorated MoS ₂ by Atomic Layer Deposition. ACS Nano, 2020, 14, 1757-1769.	7.3	29
48	The Influence of Ozone: Superstoichiometric Oxygen in Atomic Layer Deposition of Fe ₂ O ₃ Using <i>tert</i> â€Butylferrocene and O ₃ . Advanced Materials Interfaces, 2020, 7, 2000318.	1.9	13
49	A Selective Toolbox for Nanofabrication. Chemistry of Materials, 2020, 32, 3323-3324.	3.2	19
50	Structurally Stable Manganese Alkoxide Films Grown by Hybrid Molecular Layer Deposition for Electrochemical Applications. Advanced Functional Materials, 2019, 29, 1904129.	7.8	14
51	Understanding Structure–Property Relationships of MoO ₃ -Promoted Rh Catalysts for Syngas Conversion to Alcohols. Journal of the American Chemical Society, 2019, 141, 19655-19668.	6.6	41
52	Enhanced Nucleation of Atomic Layer Deposited Contacts Improves Operational Stability of Perovskite Solar Cells in Air. Advanced Energy Materials, 2019, 9, 1902353.	10.2	47
53	A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature, 2019, 570, 504-508.	13.7	1,006
54	Growth of a Surface-Tethered, All-Carbon Backboned Fluoropolymer by Photoactivated Molecular Layer Deposition. ACS Applied Materials & Interfaces, 2019, 11, 21988-21997.	4.0	13

#	Article	IF	CITATIONS
55	A Versatile Method for Ammonia Detection in a Range of Relevant Electrolytes via Direct Nuclear Magnetic Resonance Techniques. ACS Catalysis, 2019, 9, 5797-5802.	5.5	97
56	Opportunities for Atomic Layer Deposition in Emerging Energy Technologies. ACS Energy Letters, 2019, 4, 908-925.	8.8	81
57	The Role of Aluminum in Promoting Ni–Fe–OOH Electrocatalysts for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 3488-3499.	2.5	30
58	Atomic layer deposition of vanadium oxide to reduce parasitic absorption and improve stability in n–i–p perovskite solar cells for tandems. Sustainable Energy and Fuels, 2019, 3, 1517-1525.	2.5	76
59	Area-Selective Atomic Layer Deposition Assisted by Self-Assembled Monolayers: A Comparison of Cu, Co, W, and Ru. Chemistry of Materials, 2019, 31, 1635-1645.	3.2	122
60	Stability of Tin-Lead Halide Perovskite Solar Cells. , 2019, , .		0
61	Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. Nature Energy, 2019, 4, 939-947.	19.8	235
62	Nanostructuring Strategies To Increase the Photoelectrochemical Water Splitting Activity of Silicon Photocathodes. ACS Applied Nano Materials, 2019, 2, 6-11.	2.4	19
63	Synthesis of Doped, Ternary, and Quaternary Materials by Atomic Layer Deposition: A Review. Chemistry of Materials, 2019, 31, 1142-1183.	3.2	179
64	Role of Co ₂ C in ZnOâ€promoted Co Catalysts for Alcohol Synthesis from Syngas. ChemCatChem, 2019, 11, 799-809.	1.8	26
65	Area-selective atomic layer deposition of dielectric-on-dielectric for Cu/low-k dielectric patterns. , 2019, , .		3
66	Atomic and Molecular Layer Deposition of Hybrid Mo–Thiolate Thin Films with Enhanced Catalytic Activity. Advanced Functional Materials, 2018, 28, 1800852.	7.8	32
67	Understanding the Active Sites of CO Hydrogenation on Pt–Co Catalysts Prepared Using Atomic Layer Deposition. Journal of Physical Chemistry C, 2018, 122, 2184-2194.	1.5	29
68	The Role of Sodium in Tuning Product Distribution in Syngas Conversion by Rh Catalysts. Catalysis Letters, 2018, 148, 289-297.	1.4	12
69	Photoelectrochemical Water Oxidation by GaAs Nanowire Arrays Protected with Atomic Layer Deposited NiO x Electrocatalysts. Journal of Electronic Materials, 2018, 47, 932-937.	1.0	6
70	Area-Selective Atomic Layer Deposition of Metal Oxides on Noble Metals through Catalytic Oxygen Activation. Chemistry of Materials, 2018, 30, 663-670.	3.2	90
71	Thermal adsorption-enhanced atomic layer etching of Si3N4. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	0.9	24
72	<i>In situ</i> observation of phase changes of a silica-supported cobalt catalyst for the Fischer–Tropsch process by the development of a synchrotron-compatible <i>inÂsitu/operando</i> powder X-ray diffraction cell. Journal of Synchrotron Radiation, 2018, 25, 1673-1682.	1.0	47

#	Article	IF	CITATIONS
73	Optical and Compositional Engineering of Wide Band Gap Perovskites with Improved Stability to Photoinduced Phase Segregation for Efficient Monolithic Perovskite/Silicon Tandem Solar Cells. , 2018, , .		0
74	Theoretical and Experimental Studies of CoGa Catalysts for the Hydrogenation of CO2 to Methanol. Catalysis Letters, 2018, 148, 3583-3591.	1.4	17
75	Interfacial Effects of Tin Oxide Atomic Layer Deposition in Metal Halide Perovskite Photovoltaics. Advanced Energy Materials, 2018, 8, 1800591.	10.2	62
76	Encapsulating perovskite solar cells to withstand damp heat and thermal cycling. Sustainable Energy and Fuels, 2018, 2, 2398-2406.	2.5	231
77	Formation and Ripening of Self-Assembled Multilayers from the Vapor-Phase Deposition of Dodecanethiol on Copper Oxide. Chemistry of Materials, 2018, 30, 5694-5703.	3.2	32
78	Tin–lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells. Sustainable Energy and Fuels, 2018, 2, 2450-2459.	2.5	167
79	Mechanistic Studies of Chain Termination and Monomer Absorption in Molecular Layer Deposition. Chemistry of Materials, 2018, 30, 5087-5097.	3.2	19
80	Molecular Layer Deposition of a Highly Stable Silicon Oxycarbide Thin Film Using an Organic Chlorosilane and Water. ACS Applied Materials & Interfaces, 2018, 10, 24266-24274.	4.0	27
81	Minimizing Current and Voltage Losses to Reach 25% Efficient Monolithic Two-Terminal Perovskite–Silicon Tandem Solar Cells. ACS Energy Letters, 2018, 3, 2173-2180.	8.8	194
82	A Highly Active Molybdenum Phosphide Catalyst for Methanol Synthesis from CO and CO ₂ . Angewandte Chemie - International Edition, 2018, 57, 15045-15050.	7.2	69
83	Copper interstitial recombination centers in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cu</mml:mi><mml: mathvariant="normal">N</mml: </mml:msub></mml:mrow>. Physical Review B, 2018, 97, .</mml:math 	mn 1.3 <td>ກl:ໝາ></td>	ກ l:ໝ າ>
84	Optical modeling of wide-bandgap perovskite and perovskite/silicon tandem solar cells using complex refractive indices for arbitrary-bandgap perovskite absorbers. Optics Express, 2018, 26, 27441.	1.7	102
85	23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy, 2017, 2, .	19.8	1,204
86	Nanoengineering Heterogeneous Catalysts by Atomic Layer Deposition. Annual Review of Chemical and Biomolecular Engineering, 2017, 8, 41-62.	3.3	80
87	Investigation of inherent differences between oxide supports in heterogeneous catalysis in the absence of structural variations. Journal of Catalysis, 2017, 351, 49-58.	3.1	23
88	Correcting defects in area selective molecular layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	21
89	Formation of Germa-ketenimine on the Ge(100) Surface by Adsorption of <i>tert</i> -Butyl Isocyanide. Journal of the American Chemical Society, 2017, 139, 8758-8765.	6.6	6
90	Adsorption of Homotrifunctional 1,2,3-Benzenetriol on a Ge(100)-2 × 1 Surface. Langmuir, 2017, 33, 8716-8723.	1.6	6

#	Article	IF	CITATIONS
91	Effect of Backbone Chemistry on the Structure of Polyurea Films Deposited by Molecular Layer Deposition. Chemistry of Materials, 2017, 29, 1192-1203.	3.2	59
92	Buffer Layer Point Contacts for CIGS Solar Cells Using Nanosphere Lithography and Atomic Layer Deposition. IEEE Journal of Photovoltaics, 2017, 7, 322-328.	1.5	10
93	Incomplete elimination of precursor ligands during atomic layer deposition of zinc-oxide, tin-oxide, and zinc-tin-oxide. Journal of Chemical Physics, 2017, 146, 052802.	1.2	64
94	Autocatalytic Dissociative Adsorption of Imidazole on the Ge(100)-2 × 1 Surface. Journal of Physical Chemistry C, 2017, 121, 20905-20910.	1.5	1
95	Photoactivated Molecular Layer Deposition through Iodoâ^ Ene Coupling Chemistry. Chemistry of Materials, 2017, 29, 9897-9906.	3.2	9
96	Chemisorption of Organic Triols on Ge(100)-2 × 1 Surface: Effect of Backbone Structure on Adsorption of Trifunctional Molecules. Journal of Physical Chemistry C, 2017, 121, 25978-25985.	1.5	4
97	Rh-MnO Interface Sites Formed by Atomic Layer Deposition Promote Syngas Conversion to Higher Oxygenates. ACS Catalysis, 2017, 7, 5746-5757.	5.5	66
98	Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer. Solar Energy Materials and Solar Cells, 2017, 173, 59-65.	3.0	82
99	Growth, intermixing, and surface phase formation for zinc tin oxide nanolaminates produced by atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	18
100	Tailoring Mixed-Halide, Wide-Gap Perovskites via Multistep Conversion Process. ACS Applied Materials & Interfaces, 2016, 8, 14301-14306.	4.0	23
101	Recent Advances in Atomic Layer Deposition. Chemistry of Materials, 2016, 28, 1943-1947.	3.2	72
102	Sequential Regeneration of Selfâ€Assembled Monolayers for Highly Selective Atomic Layer Deposition. Advanced Materials Interfaces, 2016, 3, 1600464.	1.9	67
103	Molecular Ligands Control Superlattice Structure and Crystallite Orientation in Colloidal Quantum Dot Solids. Chemistry of Materials, 2016, 28, 7072-7081.	3.2	17
104	Impact of Conformality and Crystallinity for Ultrathin 4 nm Compact TiO ₂ Layers in Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600580.	1.9	19
105	Tandem Core–Shell Si–Ta ₃ N ₅ Photoanodes for Photoelectrochemical Water Splitting. Nano Letters, 2016, 16, 7565-7572.	4.5	99
106	Selective Deposition of Dielectrics: Limits and Advantages of Alkanethiol Blocking Agents on Metal–Dielectric Patterns. ACS Applied Materials & Interfaces, 2016, 8, 33264-33272.	4.0	82
107	Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science, 2016, 354, 861-865.	6.0	1,107
108	Strong Coupling of Plasmon and Nanocavity Modes for Dual-Band, Near-Perfect Absorbers and Ultrathin Photovoltaics. ACS Photonics, 2016, 3, 456-463.	3.2	61

#	Article	IF	CITATIONS
109	Intrinsic Selectivity and Structure Sensitivity of Rhodium Catalysts for C ₂₊ Oxygenate Production. Journal of the American Chemical Society, 2016, 138, 3705-3714.	6.6	179
110	A Process for Topographically Selective Deposition on 3D Nanostructures by Ion Implantation. ACS Nano, 2016, 10, 4451-4458.	7.3	78
111	Adsorption of heterobifunctional 4-nitrophenol on the Ge(100)-2 × 1 surface. Surface Science, 2016, 650, 279-284. Deep recombination centers in < mml:math	0.8	2
112	xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:mi mathvariant="normal">C < mml:msub> < mml:mi mathvariant="normal">u < mml:mn>2 < mml:mi>ZnSnS < mml:msub> mathvariant="normal">e < mml:mn> 4 revealed	< <mark>1.1</mark> <mml:mi< td=""><td>34</td></mml:mi<>	34
113	by screened-exchange hybrid density functional theory. Physical Review B, 2015, 92, . Reducing interface recombination for Cu(In,Ga)Se2 by atomic layer deposited buffer layers. Applied Physics Letters, 2015, 107, .	1.5	19
114	Polysulfide ligand exchange on zinc sulfide nanocrystal surfaces for improved film formation. Applied Surface Science, 2015, 359, 106-113.	3.1	21
115	Creating Highly Active Atomic Layer Deposited NiO Electrocatalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2015, 5, 1500412.	10.2	217
116	Quantifying Geometric Strain at the PbS QD-TiO ₂ Anode Interface and Its Effect on Electronic Structures. Nano Letters, 2015, 15, 7829-7836.	4.5	29
117	ALD of Ultrathin Ternary Oxide Electrocatalysts for Water Splitting. ACS Catalysis, 2015, 5, 1609-1616.	5.5	41
118	Improving Performance in Colloidal Quantum Dot Solar Cells by Tuning Band Alignment through Surface Dipole Moments. Journal of Physical Chemistry C, 2015, 119, 2996-3005.	1.5	58
119	Increased Quantum Dot Loading by pH Control Reduces Interfacial Recombination in Quantum-Dot-Sensitized Solar Cells. ACS Nano, 2015, 9, 8321-8334.	7.3	26
120	Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties. Nanoscale, 2015, 7, 12266-12283.	2.8	73
121	Self-Correcting Process for High Quality Patterning by Atomic Layer Deposition. ACS Nano, 2015, 9, 8710-8717.	7.3	119
122	Unidirectional Adsorption of Bifunctional 1,4-Phenylene Diisocyanide on the Ge(100)-2 × 1 Surface. Journal of Physical Chemistry Letters, 2015, 6, 1037-1041.	2.1	12
123	Applications of ALD MnO to electrochemical water splitting. Physical Chemistry Chemical Physics, 2015, 17, 14003-14011.	1.3	44
124	Formation of Continuous Pt Films on the Graphite Surface by Atomic Layer Deposition with Reactive O ₃ . Chemistry of Materials, 2015, 27, 6802-6809.	3.2	27
125	An atomic layer deposition chamber for in situ x-ray diffraction and scattering analysis. Review of Scientific Instruments, 2014, 85, 055116.	0.6	9
126	Thermally Activated Reactions of Nitrobenzene at the Ge(100)-2 × 1 Surface. Journal of Physical Chemistry C, 2014, 118, 29224-29233.	1.5	5

#	Article	IF	CITATIONS
127	Bifacial solar cell with SnS absorber by vapor transport deposition. Applied Physics Letters, 2014, 105, .	1.5	30
128	Structural evolution of platinum thin films grown by atomic layer deposition. Journal of Applied Physics, 2014, 116, .	1.1	27
129	Highly Textured Tin(II) Sulfide Thin Films Formed from Sheetlike Nanocrystal Inks. Chemistry of Materials, 2014, 26, 7106-7113.	3.2	33
130	Thin film characterization of zinc tin oxide deposited by thermal atomic layer deposition. Thin Solid Films, 2014, 556, 186-194.	0.8	50
131	A New Resist for Area Selective Atomic and Molecular Layer Deposition on Metal–Dielectric Patterns. Journal of Physical Chemistry C, 2014, 118, 10957-10962.	1.5	97
132	Interface Engineering in Inorganic-Absorber Nanostructured Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 348-360.	2.1	47
133	Improving Area-Selective Molecular Layer Deposition by Selective SAM Removal. ACS Applied Materials & Interfaces, 2014, 6, 17831-17836.	4.0	53
134	Strong Carbon-Surface Dative Bond Formation by <i>tert</i> Butyl Isocyanide on the Ge(100)-2 × 1 Surface. Journal of the American Chemical Society, 2014, 136, 5848-5851.	6.6	12
135	Selective metal deposition at graphene line defects by atomic layer deposition. Nature Communications, 2014, 5, 4781.	5.8	243
136	Coverage-Dependent Adsorption of Bifunctional Molecules: Detailed Insights into Interactions between Adsorbates. Journal of Physical Chemistry C, 2014, 118, 23811-23820.	1.5	20
137	Effect of O ₃ on Growth of Pt by Atomic Layer Deposition. Journal of Physical Chemistry C, 2014, 118, 12325-12332.	1.5	41
138	Nanoscale Limitations in Metal Oxide Electrocatalysts for Oxygen Evolution. Nano Letters, 2014, 14, 5853-5857.	4.5	69
139	Correlating Growth Characteristics in Atomic Layer Deposition with Precursor Molecular Structure: The Case of Zinc Tin Oxide. Chemistry of Materials, 2014, 26, 2795-2802.	3.2	45
140	Nanostructuring Materials for Solar-to-Hydrogen Conversion. Journal of Physical Chemistry C, 2014, 118, 21301-21315.	1.5	40
141	A brief review of atomic layer deposition: from fundamentals to applications. Materials Today, 2014, 17, 236-246.	8.3	1,335
142	Vapor transport deposition and epitaxy of orthorhombic SnS on glass and NaCl substrates. Applied Physics Letters, 2013, 103, .	1.5	49
143	Self-Assembly Based Plasmonic Arrays Tuned by Atomic Layer Deposition for Extreme Visible Light Absorption. Nano Letters, 2013, 13, 3352-3357.	4.5	118
144	Competing geometric and electronic effects in adsorption of phenylenediamine structural isomers on the Ge(100)-2×1 surface. Surface Science, 2013, 615, 72-79.	0.8	13

#	Article	IF	CITATIONS
145	Atomic layer deposition of CdO and CdxZn1â^'xO films. Materials Chemistry and Physics, 2013, 140, 465-471.	2.0	18
146	In Vacuo Photoemission Studies of Platinum Atomic Layer Deposition Using Synchrotron Radiation. Journal of Physical Chemistry Letters, 2013, 4, 176-179.	2.1	27
147	Semiconductor surface functionalization for advances in electronics, energy conversion, and dynamic systems. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	58
148	One-Dimensional Pattern Formation of Adsorbed Molecules on the Ge(100)-2 × 1 Surface Driven by Nearest-Neighbor Effects. Journal of Physical Chemistry C, 2013, 117, 949-955.	1.5	8
149	Insights into the Surface Chemistry of Tin Oxide Atomic Layer Deposition from Quantum Chemical Calculations. Journal of Physical Chemistry C, 2013, 117, 19056-19062.	1.5	20
150	Tin oxide atomic layer deposition from tetrakis(dimethylamino)tin and water. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	82
151	Effects of QD surface coverage in solid-state PbS quantum dot-sensitized solar cells. , 2013, , .		2
152	Effect of Al ₂ O ₃ Recombination Barrier Layers Deposited by Atomic Layer Deposition in Solid-State CdS Quantum Dot-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 5584-5592.	1.5	108
153	Growth of Pt Nanowires by Atomic Layer Deposition on Highly Ordered Pyrolytic Graphite. Nano Letters, 2013, 13, 457-463.	4.5	86
154	Efficiency enhancement of solid-state PbS quantum dot-sensitized solar cells with Al2O3 barrier layer. Journal of Materials Chemistry A, 2013, 1, 7566.	5.2	56
155	Size Dependent Effects in Nucleation of Ru and Ru Oxide Thin Films by Atomic Layer Deposition Measured by Synchrotron Radiation X-ray Diffraction. Chemistry of Materials, 2013, 25, 3458-3463.	3.2	25
156	Fabrication of organic interfacial layers by molecular layer deposition: Present status and future opportunities. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	112
157	Formation of Stable Nitrene Surface Species by the Reaction of Adsorbed Phenyl Isocyanate at the Ge(100)-2 × 1 Surface. Langmuir, 2013, 29, 15842-15850.	1.6	8
158	Adsorption of Trimethyl Phosphite at the Ge(100)-2 × 1 Surface by Nucleophilic Reaction. Journal of Physical Chemistry C, 2013, 117, 26628-26635.	1.5	10
159	TiO ₂ Conduction Band Modulation with In ₂ O ₃ Recombination Barrier Layers in Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 24138-24149.	1.5	30
160	Cross-Linked Ultrathin Polyurea Films via Molecular Layer Deposition. Macromolecules, 2013, 46, 5638-5643.	2.2	49
161	Highly Stable Ultrathin Carbosiloxane Films by Molecular Layer Deposition. Journal of Physical Chemistry C, 2013, 117, 19967-19973.	1.5	27
162	Adsorption of Structural and Stereoisomers of Cyclohexanediamine at the Ge(100)-2 × 1 Surface: Geometric Effects in Adsorption on a Semiconductor Surface. Journal of Physical Chemistry C, 2013, 117, 19063-19073.	1.5	13

#	Article	IF	CITATIONS
163	Area Selective Molecular Layer Deposition of Polyurea Films. ACS Applied Materials & Interfaces, 2013, 5, 13391-13396.	4.0	37
164	Highly Sensitive, Patternable Organic Films at the Nanoscale Made by Bottom-Up Assembly. ACS Applied Materials & Interfaces, 2013, 5, 3691-3696.	4.0	15
165	Novel photoresist thin films with in-situ photoacid generator by molecular layer deposition. , 2013, , .		1
166	Ab initio Simulation of 1D Pattern Formation of Adsorbates on the Ge(100)-2 × 1 Surface. Materials Research Society Symposia Proceedings, 2013, 1551, 81-86.	0.1	0
167	display="inline"> <mml:msub> <mml:mrow /> <mml:mn>2 </mml:mn> </mml:mrow </mml:msub> -SnO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub> <mml:mrow /> <mml:mn>2 </mml:mn></mml:mrow </mml:msub> :F interfacial electronic structure investigated by</mml:math 	1.1	39
168	The importance of dye chemistry and TiCl4 surface treatment in the behavior of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 12130.	1.3	37
169	The low temperature atomic layer deposition of ruthenium and the effect of oxygen exposure. Journal of Materials Chemistry, 2012, 22, 25154.	6.7	36
170	Transition in the Molecular Orientation of Phenol Adsorbates on the Ge(100)-2 × 1 Surface. Journal of Physical Chemistry C, 2012, 116, 7925-7930.	1.5	12
171	Nucleation-Controlled Growth of Nanoparticles by Atomic Layer Deposition. Chemistry of Materials, 2012, 24, 4051-4059.	3.2	57
172	Dissociative Adsorption of Dimethyl Sulfoxide at the Ge(100)-2 × 1 Surface. Journal of Physical Chemistry C, 2012, 116, 26422-26430.	1.5	10
173	Microstructure-Dependent Nucleation in Atomic Layer Deposition of Pt on TiO ₂ . Chemistry of Materials, 2012, 24, 279-286.	3.2	72
174	Reaction of Hydroquinone and <i>p</i> -Benzoquinone with the Ge(100)-2 × 1 Surface. Journal of Physical Chemistry C, 2012, 116, 4705-4713.	1.5	22
175	Single versus Dual Attachment in the Adsorption of Diisocyanates at the Ge(100)-2 × 1 Surface. Journal of Physical Chemistry C, 2012, 116, 12670-12679.	1.5	16
176	Power losses in bilayer inverted small molecule organic solar cells. Applied Physics Letters, 2012, 101, 233903.	1.5	6
177	Growth characteristics, material properties, and optical properties of zinc oxysulfide films deposited by atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	48
178	Recombination barrier layers in solid-state quantum dot-sensitized solar cells. , 2012, , .		0
179	Active MnO _x Electrocatalysts Prepared by Atomic Layer Deposition for Oxygen Evolution and Oxygen Reduction Reactions. Advanced Energy Materials, 2012, 2, 1269-1277.	10.2	298
180	Atomic layer deposition of CdxZn1â^'xS films. Journal of Materials Chemistry, 2011, 21, 743-751.	6.7	24

#	Article	IF	CITATIONS
181	Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition. Nanoscale, 2011, 3, 3482.	2.8	154
182	Molecular Layer Deposition of Functional Thin Films for Advanced Lithographic Patterning. ACS Applied Materials & Interfaces, 2011, 3, 505-511.	4.0	71
183	Disulfide Passivation of the Ge(100)-2 × 1 Surface. Langmuir, 2011, 27, 179-186.	1.6	24
184	Influence of organozinc ligand design on growth and material properties of ZnS and ZnO deposited by atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	0.9	36
185	Three-dimensional nanojunction device models for photovoltaics. Applied Physics Letters, 2011, 98, .	1.5	16
186	Chemical bath deposition and microstructuring of tin (II) sulfide films for photovoltaics. , 2011, , .		0
187	Optical response of 3D nano-architecture solar cells and integration with 3D device physics. , 2011, , .		1
188	Electron Enrichment in 3d Transition Metal Oxide Hetero-Nanostructures. Nano Letters, 2011, 11, 3855-3861.	4.5	74
189	Effects of Self-Assembled Monolayers on Solid-State CdS Quantum Dot Sensitized Solar Cells. ACS Nano, 2011, 5, 1495-1504.	7.3	93
190	Atomic Layer Deposition of CdS Quantum Dots for Solid‧tate Quantum Dot Sensitized Solar Cells. Advanced Energy Materials, 2011, 1, 1169-1175.	10.2	76
191	Coverage dependence of glycine adsorption on the Ge(100)â^'2×1 surface. Surface Science, 2011, 605, 760-769.	0.8	16
192	Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers. Thin Solid Films, 2011, 519, 2488-2492.	0.8	130
193	Graded and alloyed II-VI semiconductors for photovoltaic buffer layers grown by atomic layer deposition (ALD). , 2011, , .		0
194	Tuning the reactivity of semiconductor surfaces by functionalization with amines of different basicity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 956-960.	3.3	51
195	Modeling performance of three-dimensional nanojunction photovoltaic devices. , 2011, , .		1
196	Atomic layer deposition of ZnS via in situ production of H2S. Thin Solid Films, 2010, 518, 5400-5408.	0.8	64
197	Reaction of tert-butyl isocyanate and tert-butyl isothiocyanate at the Ge(100) â^' 2 × 1 Surface. Surface Science, 2010, 604, 1791-1799.	0.8	11
198	Catalysts with Pt Surface Coating by Atomic Layer Deposition for Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2010, 157, B793.	1.3	48

#	Article	IF	CITATIONS
199	Fabrication of Organic Thin Films for Copper Diffusion Barrier Layers Using Molecular Layer Deposition. Materials Research Society Symposia Proceedings, 2010, 1249, 1.	0.1	8
200	Sputtered Pt–Ru Alloys as Catalysts for Highly Concentrated Methanol Oxidation. Journal of the Electrochemical Society, 2010, 157, B314.	1.3	13
201	Adsorption Behavior of Bifunctional Molecules on Ge(100)-2 × 1: Comparison of Mercaptoethanol and Mercaptamine. Journal of Physical Chemistry C, 2010, 114, 22230-22236.	1.5	13
202	Comparative Study of Titanium Dioxide Atomic Layer Deposition on Silicon Dioxide and Hydrogen-Terminated Silicon. Journal of Physical Chemistry C, 2010, 114, 10498-10504.	1.5	86
203	ALD Growth Characteristics of ZnS Films Deposited from Organozinc and Hydrogen Sulfide Precursors. Langmuir, 2010, 26, 11899-11906.	1.6	37
204	Reaction of Phenyl Isocyanate and Phenyl Isothiocyanate with the Ge(100)-2 × 1 Surface. Journal of Physical Chemistry C, 2010, 114, 14193-14201.	1.5	17
205	Reaction Mechanism, Bonding, and Thermal Stability of 1-Alkanethiols Self-Assembled on Halogenated Ge Surfaces. Langmuir, 2010, 26, 8419-8429.	1.6	22
206	Molecular Level Insights into Atomic Layer Deposition of CdS by Quantum Chemical Calculations. Journal of Physical Chemistry C, 2010, 114, 16618-16624.	1.5	10
207	Deposition of Ultrathin Polythiourea Films by Molecular Layer Deposition. Chemistry of Materials, 2010, 22, 5563-5569.	3.2	71
208	Atomic Layer Deposition (ALD) Co-Deposited Ptâ^'Ru Binary and Pt Skin Catalysts for Concentrated Methanol Oxidation. Chemistry of Materials, 2010, 22, 3024-3032.	3.2	76
209	Formation of Organic Nanoscale Laminates and Blends by Molecular Layer Deposition. ACS Nano, 2010, 4, 331-341.	7.3	105
210	Periodic Trends in Organic Functionalization of Group IV Semiconductor Surfaces. Accounts of Chemical Research, 2010, 43, 346-355.	7.6	85
211	Atomic Layer Deposition of CdS Films. Chemistry of Materials, 2010, 22, 4669-4678.	3.2	62
212	Phosphonate self-assembled monolayers as organic linkers in solid-state quantum dot sensetized solar cells. , 2010, , .		0
213	Area Selective Atomic Layer Deposition by Microcontact Printing with a Water-Soluble Polymer. Journal of the Electrochemical Society, 2010, 157, D600.	1.3	24
214	Metal Alloy Catalysts with Pt Surface Coating by Atomic Layer Deposition for Intermediate Temperature Ceramic Fuel Cells. ECS Transactions, 2009, 25, 323-332.	0.3	2
215	Effects of Surface Functionalization on Titanium Dioxide Atomic Layer Deposition on Ge Surfaces. ECS Transactions, 2009, 25, 131-139.	0.3	5
216	Growth Process of Polyaniline Thin Films Formed by Hot Wire CVD. Chemical Vapor Deposition, 2009, 15, 133-141.	1.4	1

#	Article	IF	CITATIONS
217	Sulfur versus Oxygen Reactivity of Organic Molecules at the Ge(100)-2×1 Surface. Journal of the American Chemical Society, 2009, 131, 7005-7015.	6.6	33
218	Formation of Alkanethiolate Self-Assembled Monolayers at Halide-Terminated Ge Surfaces. Langmuir, 2009, 25, 2013-2025.	1.6	38
219	Controlling Atomic Layer Deposition of TiO ₂ in Aerogels through Surface Functionalization. Chemistry of Materials, 2009, 21, 1989-1992.	3.2	30
220	Area-Selective ALD with Soft Lithographic Methods: Using Self-Assembled Monolayers to Direct Film Deposition. Journal of Physical Chemistry C, 2009, 113, 17613-17625.	1.5	124
221	Formation of CdxZn1-xS Films for Photovoltaic Buffer Layers by Atomic Layer Deposition. ECS Transactions, 2009, 25, 9-14.	0.3	6
222	Photochemical Covalent Attachment of Alkene-Derived Monolayers onto Hydroxyl-Terminated Silica. Langmuir, 2009, 25, 11592-11597.	1.6	41
223	Silicon falls into line. Nature Nanotechnology, 2008, 3, 185-186.	15.6	6
224	Formation of an oxide-free Geâ^•TiO2 interface by atomic layer deposition on brominated Ge. Applied Physics Letters, 2008, 92, 252902.	1.5	20
225	Ultralow Loading Pt Nanocatalysts Prepared by Atomic Layer Deposition on Carbon Aerogels. Nano Letters, 2008, 8, 2405-2409.	4.5	244
226	Application of Atomic Layer Deposition of Platinum to Solid Oxide Fuel Cells. Chemistry of Materials, 2008, 20, 3897-3905.	3.2	108
227	Semiconductor Surface Chemistry. , 2008, , 323-395.		10
228	Pt-Ru Alloys Deposited by Sputtering as Catalysts for Methanol Oxidation. ECS Transactions, 2008, 16, 605-612.	0.3	4
229	Atomic Layer Deposition of Platinum for Solid Oxide Fuel Cells. ECS Transactions, 2007, 3, 249-259.	0.3	10
230	Area-Selective Atomic Layer Deposition of Platinum on YSZ Substrates Using Microcontact Printed SAMs. Journal of the Electrochemical Society, 2007, 154, D648.	1.3	73
231	Thermal Control of Amide Product Distributions at the Ge(100)-2×1 Surface. Journal of Physical Chemistry C, 2007, 111, 411-419.	1.5	11
232	Carbonâ^'Oxygen Coupling in the Reaction of Formaldehyde on Ge(100)-2×1. Journal of Physical Chemistry C, 2007, 111, 1739-1746.	1.5	12
233	ALD Resist Formed by Vapor-Deposited Self-Assembled Monolayers. Langmuir, 2007, 23, 1160-1165.	1.6	61
234	Heads or Tails: Which Is More Important in Molecular Self-Assembly?. ACS Nano, 2007, 1, 10-12.	7.3	64

#	Article	IF	CITATIONS
235	Spatial control over atomic layer deposition using microcontact-printed resists. Surface and Coatings Technology, 2007, 201, 8799-8807.	2.2	45
236	Thin collagen film scaffolds for retinal epithelial cell culture. Biomaterials, 2007, 28, 1486-1494.	5.7	101
237	A model neural interface based on functional chemical stimulation. Biomedical Microdevices, 2007, 9, 579-586.	1.4	16
238	REACTIVITY OF THE GERMANIUM SURFACE: Chemical Passivation and Functionalization. Annual Review of Physical Chemistry, 2006, 57, 467-495.	4.8	207
239	Highly Stable Monolayer Resists for Atomic Layer Deposition on Germanium and Silicon. Chemistry of Materials, 2006, 18, 3733-3741.	3.2	60
240	Carboxylic Acid Chemistry at the Ge(100)-2 × 1 Interface: Bidentate Bridging Structure Formation on a Semiconductor Surface. Journal of the American Chemical Society, 2006, 128, 770-779.	6.6	78
241	Formation of Surface-Bound Acyl Groups by Reaction of Acyl Halides on Ge(100)â^'2×1. Journal of Physical Chemistry B, 2006, 110, 4115-4124.	1.2	12
242	A model retinal interface based on directed neuronal growth for single cell stimulation. Biomedical Microdevices, 2006, 8, 141-150.	1.4	12
243	Characterization of polyconjugated thin films synthesized by hot-wire chemical vapor deposition of aniline. Thin Solid Films, 2006, 501, 341-345.	0.8	18
244	Determination of human lens capsule permeability and its feasibility as a replacement for Bruch's membrane. Biomaterials, 2006, 27, 1670-1678.	5.7	66
245	Chemistry for Positive Pattern Transfer Using Area-Selective Atomic Layer Deposition. Advanced Materials, 2006, 18, 1086-1090.	11.1	142
246	Area Selective Atomic Layer Deposition by Soft Lithography. Materials Research Society Symposia Proceedings, 2006, 917, 1.	0.1	1
247	Detecting free radicals during the hot wire chemical vapor deposition of amorphous silicon carbide films using single-source precursors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 542-549.	0.9	27
248	Tertiary amide chemistry at the Ge(100)-2×1 surface. Surface Science, 2005, 599, 41-54.	0.8	14
249	Detection of open or closed porosity in low- \hat{I}^{e} dielectrics by solvent diffusion. Microelectronic Engineering, 2005, 82, 113-118.	1.1	20
250	The influence of filament material on radical production in hot wire chemical vapor deposition of a-Si:H. Thin Solid Films, 2005, 485, 126-134.	0.8	34
251	Effect of plasma interactions with low-κ films as a function of porosity, plasma chemistry, and temperature. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 395.	1.6	80
252	Achieving area-selective atomic layer deposition on patterned substrates by selective surface modification. Applied Physics Letters, 2005, 86, 191910.	1.5	121

#	Article	IF	CITATIONS
253	Ethylenediamine on Ge(100)-2 × 1: The Role of Interdimer Interactions. Journal of Physical Chemistry B, 2005, 109, 19817-19822.	1.2	29
254	Layer-by-Layer Growth on Ge(100) via Spontaneous Urea Coupling Reactions. Journal of the American Chemical Society, 2005, 127, 6123-6132.	6.6	127
255	Investigation of Self-Assembled Monolayer Resists for Hafnium Dioxide Atomic Layer Deposition. Chemistry of Materials, 2005, 17, 536-544.	3.2	141
256	Hot Wire Chemical Vapor Deposition as a Novel Synthetic Method for Electroactive Organic Thin Films. Materials Research Society Symposia Proceedings, 2004, 814, 125.	0.1	2
257	Controlling Area-Selective Atomic Layer Deposition of HfO2 Dielectric by Self-assembled Monolayers. Materials Research Society Symposia Proceedings, 2004, 811, 191.	0.1	1
258	Directed Retinal Nerve Cell Growth for Use in a Retinal Prosthesis Interface. , 2004, 45, 4132.		31
259	A Density Functional Theory Study on the Effect of Ge Alloying on Hydrogen Desorption from SiGe Alloy Surfaces. Journal of Physical Chemistry B, 2004, 108, 6336-6350.	1.2	9
260	Quantum Chemistry Based Statistical Mechanical Model of Hydrogen Desorption from Si(100)-2 × 1, Ge(100)-2 × 1, and SiGe Alloy Surfaces. Journal of Physical Chemistry B, 2004, 108, 18243-18253.	1.2	9
261	Self-assembled monolayer resist for atomic layer deposition of HfO2 and ZrO2 high-κ gate dielectrics. Applied Physics Letters, 2004, 84, 4017-4019.	1.5	128
262	The Artificial Synapse Chip: A Flexible Retinal Interface Based on Directed Retinal Cell Growth and Neurotransmitter Stimulation. Artificial Organs, 2003, 27, 975-985.	1.0	69
263	The surface as molecular reagent: organic chemistry at the semiconductor interface. Progress in Surface Science, 2003, 73, 1-56.	3.8	355
264	Reactions of Nitriles at Semiconductor Surfaces. Journal of Physical Chemistry B, 2003, 107, 12256-12267.	1.2	35
265	Competition and Selectivity in the Reaction of Nitriles on Ge(100)â^2×1. Journal of the American Chemical Society, 2003, 125, 4928-4936.	6.6	40
266	Reactions of Cyclic Aliphatic and Aromatic Amines on Ge(100)-2×1 and Si(100)-2×1. Journal of Physical Chemistry B, 2003, 107, 4982-4996.	1.2	84
267	The Study of Modified Layers in SiCOH Dielectrics using Spectroscopic Ellipsometry. Materials Research Society Symposia Proceedings, 2003, 766, 3291.	0.1	4
268	Localized Neurotransmitter Release for Use in a Prototype Retinal Interface. , 2003, 44, 3144.		56
269	Attaching Organic Layers to Semiconductor Surfaces. Journal of Physical Chemistry B, 2002, 106, 2830-2842.	1.2	180
270	Proton Transfer Reactions on Semiconductor Surfaces. Journal of the American Chemical Society, 2002, 124, 4027-4038.	6.6	152

#	Article	IF	CITATIONS
271	Competition and Selectivity of Organic Reactions on Semiconductor Surfaces:Â Reaction of Unsaturated Ketones on Si(100)-2×1 and Ge(100)-2×1. Journal of the American Chemical Society, 2002, 124, 8990-9004.	6.6	87
272	Organic functionalization of group IV semiconductor surfaces: principles, examples, applications, and prospects. Surface Science, 2002, 500, 879-903.	0.8	511
273	Detecting reactive species in hot wire chemical vapor deposition. Current Opinion in Solid State and Materials Science, 2002, 6, 471-477.	5.6	24
274	Effect of Filament Material on the Decomposition of SiH4 in Hot Wire CVD of Si-Based Films. Materials Research Society Symposia Proceedings, 2002, 715, 1551.	0.1	8
275	Reactions of methylamines at the Si(100)-2×1 surface. Journal of Chemical Physics, 2001, 114, 10170-10180.	1.2	130
276	Effect of a Methyl-Protecting Group on the Adsorption of Pyrrolidine on Si(100)-2 × 1. Journal of Physical Chemistry B, 2001, 105, 3295-3299.	1.2	33
277	Example of a Thermodynamically Controlled Reaction on a Semiconductor Surface:Â Acetone on Ge(100)-2 × 1. Journal of Physical Chemistry B, 2001, 105, 12559-12565.	1.2	69
278	Identification of Growth Precursors In Hot Wire CVD of Amorphous Silicon Films. Materials Research Society Symposia Proceedings, 2001, 664, 311.	0.1	9
279	The effect of filament temperature on the gaseous radicals in the hot wire decomposition of silane. Thin Solid Films, 2001, 395, 36-41.	0.8	42
280	π bond versus radical character of the diamond (1 0 0)-2×1 surface. Materials Chemistry and Physics, 2001, 72, 147-151.	2.0	10
281	Probing radicals in hot wire decomposition of silane using single photon ionization. Applied Physics Letters, 2001, 78, 1784-1786.	1.5	36
282	A Theoretical Study of the Structure and Thermochemistry of 1,3-Butadiene on the Ge/Si(100)-2 × 1 Surface. Journal of Physical Chemistry A, 2000, 104, 2457-2462.	1.1	74
283	Temperature effects in the hot wire chemical vapor deposition of amorphous hydrogenated silicon carbon alloy. Journal of Applied Physics, 2000, 87, 4600-4610.	1.1	17
284	Functionalization of Diamond(100) by Dielsâ^'Alder Chemistry. Journal of the American Chemical Society, 2000, 122, 744-745.	6.6	88
285	Interaction of C6Cyclic Hydrocarbons with a Si(100)-2×1 Surface: Adsorption and Hydrogenation Reactionsâ€. Journal of Physical Chemistry B, 2000, 104, 3000-3007.	1.2	52
286	Adsorption of ethylene on the Ge(100)-2×1 surface: Coverage and time-dependent behavior. Journal of Chemical Physics, 1999, 110, 10545-10553.	1.2	48
287	Cycloaddition of Cyclopentadiene and Dicyclopentadiene on Si(100)-2×1: Comparison of Monomer and Dimer Adsorption. Journal of Physical Chemistry B, 1999, 103, 6803-6808.	1.2	50
288	In Situ Diagnostics of Methane/Hydrogen Plasma Interactions with Si(100). Materials Research Society Symposia Proceedings, 1999, 569, 179.	0.1	3

#	Article	IF	CITATIONS
289	NEXAFS studies of adsorption of benzene on Si(100)-2×1. Surface Science, 1998, 411, 286-293.	0.8	109
290	Evidence for a Retro-Dielsâ^'Alder Reaction on a Single Crystalline Surface:Â Butadienes on Ge(100). Journal of the American Chemical Society, 1998, 120, 7377-7378.	6.6	58
291	Diels–Alder reactions of butadienes with the Si(100)-2×1 surface as a dienophile: Vibrational spectroscopy, thermal desorption and near edge x-ray absorption fine structure studies. Journal of Chemical Physics, 1998, 108, 4599-4606.	1.2	102
292	Spectroscopic and thermal studies of a-SiC:H film growth: Comparison of mono-, tri-, and tetramethylsilane. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 1658-1663.	0.9	26
293	Temperature-Dependent Studies of a-SiC:H Growth by Remote Plasma CVD Using Methylsilanes. Materials Research Society Symposia Proceedings, 1997, 495, 153.	0.1	1
294	Vibrational Spectroscopic Studies of DielsⴒAlder Reactions with the Si(100)-2×1 Surface as a Dienophile. Journal of the American Chemical Society, 1997, 119, 11100-11101.	6.6	170
295	Bonding and Thermal Reactivity in Thin a-SiC:H Films Grown by Methylsilane CVD. Journal of Physical Chemistry B, 1997, 101, 9195-9205.	1.2	36
296	Infrared spectroscopy of methyl groups on silicon. Chemical Physics Letters, 1996, 263, 1-7.	1.2	47
297	Ultrathin light absorbers based on plasmonic nanocomposites. SPIE Newsroom, 0, , .	0.1	Ο
298	Designing Contact Layers and Surface Treatments to Overcome Performance Challenges for Perovskite Tandems. , 0, , .		0