
## Jean-Charles Arnault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2912844/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Photoluminescent Diamond Nanoparticles for Cell Labeling: Study of the Uptake Mechanism in<br>Mammalian Cells. ACS Nano, 2009, 3, 3955-3962.                                                      | 14.6 | 306       |
| 2  | Surface properties of hydrogenated nanodiamonds: a chemical investigation. Physical Chemistry Chemical Physics, 2011, 13, 11517.                                                                  | 2.8  | 116       |
| 3  | Early stages of surface graphitization on nanodiamond probed by x-ray photoelectron spectroscopy.<br>Physical Review B, 2011, 84, .                                                               | 3.2  | 116       |
| 4  | Unusual Water Hydrogen Bond Network around Hydrogenated Nanodiamonds. Journal of Physical<br>Chemistry C, 2017, 121, 5185-5194.                                                                   | 3.1  | 104       |
| 5  | Electrostatic Grafting of Diamond Nanoparticles: A Versatile Route to Nanocrystalline Diamond Thin<br>Films. ACS Applied Materials & Interfaces, 2009, 1, 2738-2746.                              | 8.0  | 96        |
| 6  | Large-area high-quality single crystal diamond. MRS Bulletin, 2014, 39, 504-510.                                                                                                                  | 3.5  | 88        |
| 7  | XPS study of ruthenium tris-bipyridine electrografted from diazonium salt derivative on microcrystalline boron doped diamond. Physical Chemistry Chemical Physics, 2009, 11, 11647.               | 2.8  | 85        |
| 8  | Raman spectroscopy study of detonation nanodiamond. Diamond and Related Materials, 2018, 87, 248-260.                                                                                             | 3.9  | 73        |
| 9  | Surface chemical modifications and surface reactivity of nanodiamonds hydrogenated by CVD plasma.<br>Physical Chemistry Chemical Physics, 2011, 13, 11481.                                        | 2.8  | 71        |
| 10 | Surface transfer doping can mediate both colloidal stability and self-assembly of nanodiamonds.<br>Nanoscale, 2013, 5, 8958.                                                                      | 5.6  | 65        |
| 11 | Impairing the radioresistance of cancer cells by hydrogenated nanodiamonds. Biomaterials, 2015, 61, 290-298.                                                                                      | 11.4 | 62        |
| 12 | Oxygen hole doping of nanodiamond. Nanoscale, 2012, 4, 6792.                                                                                                                                      | 5.6  | 61        |
| 13 | Etching mechanism of diamond by Ni nanoparticles for fabrication of nanopores. Carbon, 2013, 59, 448-456.                                                                                         | 10.3 | 55        |
| 14 | Plasma hydrogenated cationic detonation nanodiamonds efficiently deliver to human cells in culture functional siRNA targeting the Ewing sarcoma junction oncogene. Biomaterials, 2015, 45, 93-98. | 11.4 | 49        |
| 15 | Surface Modifications of Detonation Nanodiamonds Probed by Multiwavelength Raman Spectroscopy.<br>Journal of Physical Chemistry C, 2014, 118, 23415-23425.                                        | 3.1  | 46        |
| 16 | Nanoparticles Assume Electrical Potential According to Substrate, Size, and Surface Termination.<br>Langmuir, 2013, 29, 1634-1641.                                                                | 3.5  | 41        |
| 17 | Surface Area of Carbon Nanoparticles: A Dose Metric for a More Realistic Ecotoxicological<br>Assessment. Nano Letters, 2016, 16, 3514-3518.                                                       | 9.1  | 39        |
| 18 | Synchrotron Bragg diffraction imaging characterization of synthetic diamond crystals for optical and electronic power device applications. Journal of Applied Crystallography, 2017, 50, 561-569. | 4.5  | 39        |

JEAN-CHARLES ARNAULT

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Chemical Vapor Deposition Singleâ€Crystal Diamond: A Review. Physica Status Solidi - Rapid Research<br>Letters, 2022, 16, 2100354.                                                     | 2.4  | 36        |
| 20 | Laser heating versus phonon confinement effect in the Raman spectra of diamond nanoparticles.<br>Journal of Nanoparticle Research, 2012, 14, 1.                                        | 1.9  | 30        |
| 21 | Tritium labeling of detonation nanodiamonds. Chemical Communications, 2014, 50, 2916-2918.                                                                                             | 4.1  | 29        |
| 22 | HIGHLY ORIENTED DIAMOND FILMS ON HETEROSUBSTRATES: CURRENT STATE OF THE ART AND REMAINING CHALLENGES. Surface Review and Letters, 2003, 10, 127-146.                                   | 1.1  | 27        |
| 23 | Electronic and physico-chemical properties of nanometric boron delta-doped diamond structures.<br>Journal of Applied Physics, 2014, 116, 083702.                                       | 2.5  | 26        |
| 24 | Epitaxy of iridium on SrTiO3/Si (001): A promising scalable substrate for diamond heteroepitaxy.<br>Diamond and Related Materials, 2016, 66, 67-76.                                    | 3.9  | 26        |
| 25 | Hydroxyl radical production induced by plasma hydrogenated nanodiamonds under X-ray irradiation.<br>Chemical Communications, 2017, 53, 1237-1240.                                      | 4.1  | 25        |
| 26 | Hydrogen plasma treated nanodiamonds lead to an overproduction of hydroxyl radicals and solvated electrons in solution under ionizing radiation. Carbon, 2020, 162, 510-518.           | 10.3 | 21        |
| 27 | Delivery of siRNA to Ewing Sarcoma Tumor Xenografted on Mice, Using Hydrogenated Detonation<br>Nanodiamonds: Treatment Efficacy and Tissue Distribution. Nanomaterials, 2020, 10, 553. | 4.1  | 20        |
| 28 | Surface Science Contribution to the BEN Control on Si(100) and 3Câ€SiC(100): Towards Ultrathin<br>Nanocrystalline Diamond Films. Chemical Vapor Deposition, 2008, 14, 187-195.         | 1.3  | 17        |
| 29 | Dislocation density reduction using overgrowth on hole arrays made in heteroepitaxial diamond substrates. Applied Physics Letters, 2021, 118, .                                        | 3.3  | 16        |
| 30 | Combining nanostructuration with boron doping to alter sub band gap acceptor states in diamond materials. Journal of Materials Chemistry A, 2018, 6, 16645-16654.                      | 10.3 | 14        |
| 31 | Using hydrogen isotope incorporation as a tool to unravel the surfaces of hydrogen-treated nanodiamonds. Nanoscale, 2019, 11, 8027-8036.                                               | 5.6  | 12        |
| 32 | Surface potential of diamond and gold nanoparticles can be locally switched by surrounding materials or applied voltage. Journal of Nanoparticle Research, 2014, 16, 1.                | 1.9  | 10        |
| 33 | Electrostatic Self-Assembly of Diamond Nanoparticles onto Al- and N-Polar Sputtered Aluminum Nitride Surfaces. Nanomaterials, 2016, 6, 217.                                            | 4.1  | 10        |
| 34 | Surface graphitization of ozone-treated detonation nanodiamonds. Physica Status Solidi (A)<br>Applications and Materials Science, 2014, 211, 2739-2743.                                | 1.8  | 9         |
| 35 | Photoluminescence of nanodiamonds influenced by charge transfer from silicon and metal substrates. Diamond and Related Materials, 2016, 63, 91-96.                                     | 3.9  | 9         |
| 36 | Encapsulated nanodiamonds in smart microgels toward self-assembled diamond nanoarrays. Diamond and Related Materials, 2013, 33, 32-37.                                                 | 3.9  | 8         |

JEAN-CHARLES ARNAULT

| #  | Article                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Fluorescence and Physico-Chemical Properties of Hydrogenated Detonation Nanodiamonds. Journal of<br>Carbon Research, 2020, 6, 7.                                       | 2.7 | 8         |
| 38 | Diamond electrodes for trace alpha pollutant sequestration via covalent grafting of nitrilotriacetic acid (NTA) ligand. Electrochimica Acta, 2014, 136, 430-434.       | 5.2 | 7         |
| 39 | New Insights into the Reactivity of Detonation Nanodiamonds during the First Stages of Graphitization. Nanomaterials, 2021, 11, 2671.                                  | 4.1 | 5         |
| 40 | Impact of Nitrogen, Boron and Phosphorus Impurities on the Electronic Structure of Diamond Probed<br>by X-ray Spectroscopies. Journal of Carbon Research, 2021, 7, 28. | 2.7 | 1         |
| 41 | Switching polarity of oxidized detonation diamond nanoparticles on substrates. Physica Status Solidi<br>(A) Applications and Materials Science, 2013, 210, 2095-2099.  | 1.8 | О         |
| 42 | Visible Light Photodiodes and Photovoltages from Detonation Nanodiamonds. MRS Advances, 2016, 1, 971-975.                                                              | 0.9 | 0         |
| 43 | Nanodiamonds: From synthesis to applications. , 2021, , 209-246.                                                                                                       |     | Ο         |
| 44 | (Invited) Nanodiamonds and Bioapplications. ECS Meeting Abstracts, 2021, MA2021-01, 504-504.                                                                           | 0.0 | 0         |