## **Chaoying Wan**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2911981/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Reactive extrusion of biodegradable <scp>PGA</scp> / <scp>PBAT</scp> blends to enhance flexibility<br>and gas barrier properties. Journal of Applied Polymer Science, 2022, 139, 51617.                                  | 2.6  | 33        |
| 2  | Enzymatic hydrolysis of bacterial cellulose in the presence of a nonâ€catalytic ceratoâ€platanin protein.<br>Journal of Applied Polymer Science, 2022, 139, 51886.                                                       | 2.6  | 2         |
| 3  | A continuous spatial confining process towards high electrical conductivity of elastomer composites with a low percolation threshold. Composites Science and Technology, 2022, 218, 109155.                              | 7.8  | 7         |
| 4  | Electron Beam-Mediated Cross-Linking of Blown Film-Extruded Biodegradable PGA/PBAT Blends toward<br>High Toughness and Low Oxygen Permeation. ACS Sustainable Chemistry and Engineering, 2022, 10,<br>1267-1276.         | 6.7  | 31        |
| 5  | Peanoâ€Hydraulically Amplified Selfâ€Healing Electrostatic Actuators Based on a Novel Bilayer Polymer<br>Shell for Enhanced Strain, Load, and Rotary Motion. Advanced Intelligent Systems, 2022, 4, .                    | 6.1  | 4         |
| 6  | Efficient thermo-oxidative reclamation of green tire rubber and silanized-silica/rubber interface characterization. Polymer Degradation and Stability, 2022, 196, 109827.                                                | 5.8  | 8         |
| 7  | Tuning triboelectric and energy harvesting properties of dielectric elastomers <i>via</i> dynamic ionic crosslinks. Materials Advances, 2022, 3, 4213-4226.                                                              | 5.4  | 3         |
| 8  | Damping and Electromechanical Behavior of Ionic-Modified Brominated<br>Poly(isobutylene- <i>co</i> -isoprene) Rubber Containing Petroleum Resin C5. Industrial &<br>Engineering Chemistry Research, 2022, 61, 3063-3074. | 3.7  | 10        |
| 9  | Advancement of Electroadhesion Technology for Intelligent and Selfâ€Reliant Robotic Applications.<br>Advanced Intelligent Systems, 2022, 4, .                                                                            | 6.1  | 11        |
| 10 | Peanoâ€Hydraulically Amplified Selfâ€Healing Electrostatic Actuators Based on a Novel Bilayer Polymer<br>Shell for Enhanced Strain, Load, and Rotary Motion. Advanced Intelligent Systems, 2022, 4, 2270022.             | 6.1  | 0         |
| 11 | Tailoring Electromechanical Properties of Natural Rubber Vitrimers by Cross-Linkers. Industrial &<br>Engineering Chemistry Research, 2022, 61, 8871-8880.                                                                | 3.7  | 5         |
| 12 | Self-healing and mechanical performance of dynamic glycol chitosan hydrogel nanocomposites.<br>Journal of Materials Chemistry B, 2021, 9, 809-823.                                                                       | 5.8  | 19        |
| 13 | Achievements and Prospects of Thermoelectric and Hybrid Energy Harvesters for Wearable Electronic Applications. , 2021, , 3-40.                                                                                          |      | 1         |
| 14 | Understanding H <sub>2</sub> O <sub>2</sub> -Induced Thermo-Oxidative Reclamation of Vulcanized<br>Styrene Butadiene Rubber at Low Temperatures. ACS Sustainable Chemistry and Engineering, 2021, 9,<br>2378-2387.       | 6.7  | 15        |
| 15 | Dynamic Polymer Networks: A New Avenue towards Sustainable and Advanced Soft Machines.<br>Angewandte Chemie, 2021, 133, 13841-13852.                                                                                     | 2.0  | 8         |
| 16 | Dynamic Polymer Networks: A New Avenue towards Sustainable and Advanced Soft Machines.<br>Angewandte Chemie - International Edition, 2021, 60, 13725-13736.                                                              | 13.8 | 43        |
| 17 | Piezoelectricâ€Driven Selfâ€Sensing Leafâ€Mimic Actuator Enabled by Integration of a Selfâ€Healing Dielectric<br>Elastomer and a Piezoelectric Composite. Advanced Intelligent Systems, 2021, 3, 2000248.                | 6.1  | 7         |
| 18 | Challenges and Opportunities of Selfâ€Healing Polymers and Devices for Extreme and Hostile<br>Environments. Advanced Materials, 2021, 33, e2008052.                                                                      | 21.0 | 82        |

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | An anchoring array assembly method for enhancing the electrical conductivity of composites of polypropylene and hybrid fillers. Composites Science and Technology, 2021, 211, 108846.                                                     | 7.8  | 6         |
| 20 | Design and Control of Compostability in Synthetic Biopolyesters. ACS Sustainable Chemistry and Engineering, 2021, 9, 9151-9164.                                                                                                           | 6.7  | 47        |
| 21 | Synthesis of Poly(Lactic Acid-co-Glycolic Acid) Copolymers with High Glycolide Ratio by Ring-Opening Polymerisation. Polymers, 2021, 13, 2458.                                                                                            | 4.5  | 13        |
| 22 | Piezoelectricâ€Driven Selfâ€Sensing Leafâ€Mimic Actuator Enabled by Integration of a Selfâ€Healing Dielectric<br>Elastomer and a Piezoelectric Composite. Advanced Intelligent Systems, 2021, 3, 2170062.                                 | 6.1  | 1         |
| 23 | Isocyanate-functionalised graphene oxide and poly(vinyl alcohol) nacre-mimetic inspired freestanding<br>films. Nanoscale Advances, 2021, 4, 49-57.                                                                                        | 4.6  | 2         |
| 24 | Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites. International Materials Reviews, 2020, 65, 129-163.                                                                              | 19.3 | 67        |
| 25 | Shape memory and selfâ€healing behavior of styrene–butadiene–styrene/ethyleneâ€methacrylic acid<br>copolymer (SBS/EMAA) elastomers containing ionic interactions. Journal of Applied Polymer Science,<br>2020, 137, 48666.                | 2.6  | 20        |
| 26 | Shape memory properties of polyethylene/ethylene vinyl acetate /carbon nanotube composites. Polymer<br>Testing, 2020, 81, 106227.                                                                                                         | 4.8  | 11        |
| 27 | Soybean oil induced efficient thermal–oxidative degradation of covalently crosslinked styrene<br>butadiene rubber. Journal of Applied Polymer Science, 2020, 137, 48935.                                                                  | 2.6  | 3         |
| 28 | Gas Barrier Polymer Nanocomposite Films Prepared by Graphene Oxide Encapsulated Polystyrene<br>Microparticles. ACS Applied Polymer Materials, 2020, 2, 725-731.                                                                           | 4.4  | 22        |
| 29 | Self-Healing of Materials under High Electrical Stress. Matter, 2020, 3, 989-1008.                                                                                                                                                        | 10.0 | 47        |
| 30 | Shape memory-assisted self-healing polymer systems. , 2020, , 95-121.                                                                                                                                                                     |      | 2         |
| 31 | Freestanding α-zirconium phosphate based nacre-like composite films cast from water. Composites Science and Technology, 2020, 200, 108443.                                                                                                | 7.8  | 6         |
| 32 | Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications. Green Chemistry, 2020, 22, 4055-4081.                                                                           | 9.0  | 212       |
| 33 | Dynamic crosslinked rubbers for a green future: A material perspective. Materials Science and Engineering Reports, 2020, 141, 100561.                                                                                                     | 31.8 | 90        |
| 34 | Coupling Dynamic Covalent Bonds and Ionic Crosslinking Network to Promote Shape Memory<br>Properties of Ethylene-vinyl Acetate Copolymers. Polymers, 2020, 12, 983.                                                                       | 4.5  | 12        |
| 35 | Graphene Oxide Functionalized with 2-Ureido-4[1 <i>H</i> ]-pyrimidinone for Production of Nacre-Like<br>Films. ACS Applied Nano Materials, 2020, 3, 7161-7171.                                                                            | 5.0  | 8         |
| 36 | Understanding the enhancement and temperature-dependency of the self-healing and<br>electromechanical properties of dielectric elastomers containing mixed pendant polar groups.<br>Journal of Materials Chemistry C, 2020, 8, 5426-5436. | 5.5  | 10        |

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Structure and electrochemical properties of hierarchically porous carbon nanomaterials derived<br>from hybrid ZIF-8/ZIF-67 bi-MOF coated cyclomatrix poly(organophosphazene) nanospheres. New<br>Journal of Chemistry, 2020, 44, 4353-4362. | 2.8  | 3         |
| 38 | Self-Healing Dielectric Elastomers for Damage-Tolerant Actuation and Energy Harvesting. ACS Applied Materials & Interfaces, 2020, 12, 7595-7604.                                                                                            | 8.0  | 55        |
| 39 | Structure and Dielectric Properties of Electroactive Tetraaniline Grafted Non-Polar Elastomers.<br>Journal of Composites Science, 2020, 4, 25.                                                                                              | 3.0  | 6         |
| 40 | Effective Thermal-Oxidative Reclamation of Waste Tire Rubbers for Producing High-Performance Rubber Composites. ACS Sustainable Chemistry and Engineering, 2020, 8, 9079-9087.                                                              | 6.7  | 48        |
| 41 | Fused deposition modelling (FDM) of composites of graphene nanoplatelets and polymers for high thermal conductivity: a mini-review. Functional Composite Materials, 2020, 1, .                                                              | 1.4  | 9         |
| 42 | Effects of an ionic liquid and processing conditions on the β-polymorph crystal formation in poly(vinylidene fluoride). CrystEngComm, 2019, 21, 5418-5428.                                                                                  | 2.6  | 32        |
| 43 | Interface design for high energy density polymer nanocomposites. Chemical Society Reviews, 2019, 48, 4424-4465.                                                                                                                             | 38.1 | 531       |
| 44 | Electrical dual-percolation in MWCNTs/SBS/PVDF based thermoplastic elastomer (TPE) composites and the effect of mechanical stretching. European Polymer Journal, 2019, 112, 504-514.                                                        | 5.4  | 16        |
| 45 | Self-assembly of fluoride-encapsulated polyhedral oligomeric silsesquioxane (POSS) nanocrystals.<br>CrystEngComm, 2019, 21, 710-723.                                                                                                        | 2.6  | 8         |
| 46 | Characterisation of graphite nanoplatelets (GNP) prepared at scale by high-pressure homogenisation.<br>Journal of Materials Chemistry C, 2019, 7, 6383-6390.                                                                                | 5.5  | 26        |
| 47 | Nucleation of the $\hat{l}^2$ -polymorph in Composites of Poly(propylene) and Graphene Nanoplatelets. Journal of Composites Science, 2019, 3, 38.                                                                                           | 3.0  | 6         |
| 48 | Heteroatom-doped core/shell carbonaceous framework materials: synthesis, characterization and electrochemical properties. New Journal of Chemistry, 2019, 43, 5632-5641.                                                                    | 2.8  | 12        |
| 49 | Electrical and Mechanical Selfâ€Healing in Highâ€Performance Dielectric Elastomer Actuator Materials.<br>Advanced Functional Materials, 2019, 29, 1808431.                                                                                  | 14.9 | 92        |
| 50 | Mechanically Enhanced Electrical Conductivity of Polydimethylsiloxane-Based Composites by a Hot<br>Embossing Process. Polymers, 2019, 11, 56.                                                                                               | 4.5  | 19        |
| 51 | Enhancing thermal conductivity of polydimethylsiloxane composites through spatially confined network of hybrid fillers. Composites Science and Technology, 2019, 172, 163-171.                                                              | 7.8  | 53        |
| 52 | Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers.<br>Progress in Materials Science, 2019, 100, 170-186.                                                                                       | 32.8 | 370       |
| 53 | Ferroelectret materials and devices for energy harvesting applications. Nano Energy, 2019, 57, 118-140.                                                                                                                                     | 16.0 | 108       |
| 54 | Mechanical and dielectric properties of MWCNT filled chemically modified SBS/PVDF blends.<br>Composites Communications, 2018, 8, 58-64.                                                                                                     | 6.3  | 10        |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | 2D boron nitride nanosheets (BNNS) prepared by high-pressure homogenisation: structure and morphology. Nanoscale, 2018, 10, 19469-19477.                                                                           | 5.6  | 80        |
| 56 | Stress-oscillation behaviour of semi-crystalline polymers: the case of poly(butylene succinate). Soft<br>Matter, 2018, 14, 9175-9184.                                                                              | 2.7  | 22        |
| 57 | Partially Neutralized Polyacrylic Acid/Poly(vinyl alcohol) Blends as Effective Binders for<br>High-Performance Silicon Anodes in Lithium-Ion Batteries. ACS Applied Energy Materials, 2018, 1,<br>6890-6898.       | 5.1  | 42        |
| 58 | Intrinsic Tuning of Poly(styrene–butadiene–styrene)-Based Self-Healing Dielectric Elastomer<br>Actuators with Enhanced Electromechanical Properties. ACS Applied Materials & Interfaces, 2018,<br>10, 38438-38448. | 8.0  | 51        |
| 59 | Stepwise exfoliation of bound rubber from carbon black nanoparticles and the structure characterization. Polymer Testing, 2018, 71, 115-124.                                                                       | 4.8  | 26        |
| 60 | Intrinsically Tuning the Electromechanical Properties of Elastomeric Dielectrics: A Chemistry Perspective. Macromolecular Rapid Communications, 2018, 39, e1800340.                                                | 3.9  | 40        |
| 61 | Vegetable derived-oil facilitating carbon black migration from waste tire rubbers and its reinforcement effect. Waste Management, 2018, 78, 238-248.                                                               | 7.4  | 56        |
| 62 | Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure. Journal of Materials Chemistry A, 2017, 5, 3091-3128.                               | 10.3 | 406       |
| 63 | Cyclomatrix polyphosphazenes frameworks (Cyclo-POPs) and the related nanomaterials: Synthesis, assembly and functionalisation. Materials Today Communications, 2017, 11, 38-60.                                    | 1.9  | 44        |
| 64 | Functionalization of BaTiO3 nanoparticles with electron insulating and conducting organophosphazene-based hybrid materials. RSC Advances, 2017, 7, 19674-19683.                                                    | 3.6  | 5         |
| 65 | Plasticisation and compatibilisation of poly(propylene) with poly(lauryl acrylate) surface modified<br>MWCNTs. Polymer, 2017, 133, 89-101.                                                                         | 3.8  | 8         |
| 66 | Thermal conductivity of 2D nano-structured graphitic materials and their composites with epoxy resins. 2D Materials, 2017, 4, 042001.                                                                              | 4.4  | 39        |
| 67 | Surface amination of carbon nanoparticles for modification of epoxy resins: plasma-treatment vs.<br>wet-chemistry approach. European Polymer Journal, 2017, 87, 422-448.                                           | 5.4  | 59        |
| 68 | Flexible Piezoelectric and Pyroelectric Polymers and Nanocomposites for Energy Harvesting Applications. Engineering Materials and Processes, 2017, , 537-557.                                                      | 0.4  | 1         |
| 69 | Heteroatom Doped-Carbon Nanospheres as Anodes in Lithium Ion Batteries. Materials, 2016, 9, 35.                                                                                                                    | 2.9  | 38        |
| 70 | Graft copolymerization of methyl methacrylate from brominated poly(isobutyleneâ€ <i>co</i> â€isoprene)<br>via atom transfer radical polymerization. Journal of Applied Polymer Science, 2016, 133, .               | 2.6  | 0         |
| 71 | Core-shell structured carbon nanoparticles derived from light pyrolysis of waste tires. Polymer Degradation and Stability, 2016, 129, 192-198.                                                                     | 5.8  | 37        |
| 72 | Functionalisation of MWCNTs with poly(lauryl acrylate) polymerised by Cu(0)-mediated and RAFT methods. Polymer Chemistry, 2016, 7, 3884-3896.                                                                      | 3.9  | 21        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Separation of core-shell structured carbon black nanoparticles from waste tires by light pyrolysis.<br>Composites Science and Technology, 2016, 135, 13-20.                                                                                  | 7.8 | 24        |
| 74 | Heteroatom–doped hollow carbon microspheres based on amphiphilic supramolecular vesicles and<br>highly crosslinked polyphosphazene for high performance supercapacitor electrode materials.<br>Electrochimica Acta, 2016, 222, 543-550.      | 5.2 | 19        |
| 75 | Enhancing cycling durability of Li-ion batteries with hierarchical structured silicon–graphene hybrid<br>anodes. Physical Chemistry Chemical Physics, 2016, 18, 30677-30685.                                                                 | 2.8 | 25        |
| 76 | Electronic Applications of Ethylene Vinyl Acetate and Its Composites. Springer Series on Polymer and<br>Composite Materials, 2016, , 61-85.                                                                                                  | 0.7 | 4         |
| 77 | Silicon Anodes Incorporating Few-Layer Graphene (FLG) for Improved Cyclability in Li-Ion Batteries. ECS<br>Meeting Abstracts, 2016, , .                                                                                                      | 0.0 | 0         |
| 78 | Novel Binary Binder PAA-SBR Towards Silicon Anodes in Li-Ion Batteries. ECS Meeting Abstracts, 2016, , .                                                                                                                                     | 0.0 | 0         |
| 79 | Graphene oxide as a covalent-crosslinking agent for EVM-g-PA6 thermoplastic elastomeric nanocomposites. RSC Advances, 2015, 5, 39042-39051.                                                                                                  | 3.6 | 9         |
| 80 | Polysaccharide-assisted rapid exfoliation of graphite platelets into high quality water-dispersible<br>graphene sheets. RSC Advances, 2015, 5, 26482-26490.                                                                                  | 3.6 | 58        |
| 81 | Exceptional oxygen barrier performance of pullulan nanocomposites with ultra-low loading of graphene oxide. Nanotechnology, 2015, 26, 275703.                                                                                                | 2.6 | 39        |
| 82 | Efficient oxygen reduction catalysts formed of cobalt phosphide nanoparticle decorated heteroatom-doped mesoporous carbon nanotubes. Chemical Communications, 2015, 51, 7891-7894.                                                           | 4.1 | 87        |
| 83 | Non-covalent functionalization of graphene oxide by pyrene-block copolymers for enhancing physical properties of poly(methyl methacrylate). RSC Advances, 2015, 5, 79947-79955.                                                              | 3.6 | 38        |
| 84 | Heteroatom-doped mesoporous carbon nanofibers based on highly cross-linked hybrid polymeric<br>nanofibers: Facile synthesis and application in an electrochemical supercapacitor. Materials<br>Chemistry and Physics, 2015, 164, 85-90.      | 4.0 | 23        |
| 85 | Hybrids based on transition metal phosphide (Mn <sub>2</sub> P, Co <sub>2</sub> P, Ni <sub>2</sub> P)<br>nanoparticles and heteroatom-doped carbon nanotubes for efficient oxygen reduction reaction. RSC<br>Advances, 2015, 5, 92893-92898. | 3.6 | 37        |
| 86 | Convenient one-pot approach for the preparation of novel atomically thin two-dimensional polymeric nanosheets, and its evolution in aqueous solution. Materials Letters, 2015, 139, 93-97.                                                   | 2.6 | 12        |
| 87 | Recent Advances in Graphene-Based Materials for Lithium Batteries. Current Organic Chemistry, 2015, 19, 1838-1849.                                                                                                                           | 1.6 | 7         |
| 88 | <i>In situ</i> ester–amide exchange reaction between polyamide 6 and ethyleneâ€vinyl acetate rubber<br>during melt blending. Journal of Applied Polymer Science, 2014, 131, .                                                                | 2.6 | 2         |
| 89 | Photoinduced sequence-control via one pot living radical polymerization of acrylates. Chemical Science, 2014, 5, 3536-3542.                                                                                                                  | 7.4 | 151       |
| 90 | Reactive processing of ethylene-vinyl acetate rubber/polyamide blends via a dynamic transesterification reaction. Polymer Bulletin, 2014, 71, 1505-1521.                                                                                     | 3.3 | 7         |

| #   | Article                                                                                                                                                                                                                         | IF        | CITATIONS   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|
| 91  | Reinforcement of biodegradable poly(butylene succinate) with low loadings of graphene oxide.<br>Journal of Applied Polymer Science, 2013, 127, 5094-5099.                                                                       | 2.6       | 34          |
| 92  | Physical properties and crystallization behavior of ethylene-vinyl acetate rubber/polyamide/graphene oxide thermoplastic elastomer nanocomposites. RSC Advances, 2013, 3, 26166.                                                | 3.6       | 13          |
| 93  | Structural and electrical properties of CuAlMo thin films prepared by magnetron sputtering. Thin Solid Films, 2013, 540, 235-241.                                                                                               | 1.8       | 5           |
| 94  | Morphology and mechanical properties of ethyleneâ€vinyl acetate rubber/polyamide thermoplastic<br>elastomers. Journal of Applied Polymer Science, 2013, 130, 338-344.                                                           | 2.6       | 18          |
| 95  | Reinforcement and interphase of polymer/graphene oxide nanocomposites. Journal of Materials<br>Chemistry, 2012, 22, 3637.                                                                                                       | 6.7       | 225         |
| 96  | Synthesis and characterization of biomimetic hydroxyapatite/sepiolite nanocomposites. Nanoscale, 2011, 3, 693-700.                                                                                                              | 5.6       | 66          |
| 97  | Structure and mechanical properties of gelatin/sepiolite nanocomposite foams. Journal of Materials<br>Chemistry, 2011, 21, 9103.                                                                                                | 6.7       | 73          |
| 98  | Poly(ε-caprolactone)/graphene oxide biocomposites: mechanical properties and bioactivity. Biomedical<br>Materials (Bristol), 2011, 6, 055010.                                                                                   | 3.3       | 177         |
| 99  | Strong and bioactive gelatin–graphene oxide nanocomposites. Soft Matter, 2011, 7, 6159.                                                                                                                                         | 2.7       | 144         |
| 100 | An investigation into synergistic effects of rare earth oxides on intumescent flame retardancy of<br>polypropylene/poly (octyleneâ€ <i>co</i> â€ethylene) blends. Polymers for Advanced Technologies, 2011, 22,<br>1414-1421.   | 3.2       | 35          |
| 101 | Reinforcement of hydrogenated carboxylated nitrile–butadiene rubber with exfoliated graphene oxide. Carbon, 2011, 49, 1608-1613.                                                                                                | 10.3      | 164         |
| 102 | Blends of poly(2,6â€dimethylâ€1,4â€phenylene oxide)/polyamide 6 toughened by maleated polystyreneâ€based copolymers: Mechanical properties, morphology, and rheology. Journal of Applied Polymer Science, 2010, 115, 3385-3392. | 2.6       | 26          |
| 103 | Reactive Compatibilization and Elastomer Toughening of Poly(2,6-dimethyl-1,4-phenylene) Tj ETQq1 1 0.784314                                                                                                                     | rgBT /Ove | rlgck 10 Tf |
| 104 | Effect of POSS on morphology and mechanical properties of polyamide 12/montmorillonite nanocomposites. Applied Clay Science, 2010, 47, 249-256.                                                                                 | 5.2       | 55          |
| 105 | Investigation on morphology and mechanical properties of polyamide 6/maleated<br>ethyleneâ€propyleneâ€diene rubber/organoclay composites. Polymer Engineering and Science, 2009, 49,<br>209-216.                                | 3.1       | 25          |
| 106 | Toughening modification of PLLA/PBS blends via in situ compatibilization. Polymer Engineering and Science, 2009, 49, 26-33.                                                                                                     | 3.1       | 242         |
| 107 | Investigation on the multiwalled carbon nanotubes reinforced polyamide 6/polypropylene composites.<br>Polymer Engineering and Science, 2009, 49, 1909-1917.                                                                     | 3.1       | 49          |
| 108 | Morphology, mechanical properties, and durability of poly(lactic acid) plasticized with Di(isononyl)<br>cyclohexaneâ€1,2â€dicarboxylate. Polymer Engineering and Science, 2009, 49, 2414-2420.                                  | 3.1       | 39          |

| #   | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Effect of POSS on crystalline transitions and physical properties of polyamide 12. Journal of Polymer<br>Science, Part B: Polymer Physics, 2009, 47, 121-129.                                                    | 2.1 | 31        |
| 110 | Modification of montmorillonite with aminopropylisooctyl polyhedral oligomeric silsequioxane.<br>Journal of Colloid and Interface Science, 2009, 333, 164-170.                                                   | 9.4 | 65        |
| 111 | Morphology and electrical properties of polyamide 6/polypropylene/multi-walled carbon nanotubes composites. Composites Science and Technology, 2009, 69, 2212-2217.                                              | 7.8 | 80        |
| 112 | Synthesis and Characterization of Photoluminescent Eu(III) Coordination Halloysite Nanotube-Based Nanohybrids. Journal of Physical Chemistry C, 2009, 113, 16238-16246.                                          | 3.1 | 48        |
| 113 | Effects of interfacial adhesion on properties of polypropylene/Wollastonite composites. Journal of Applied Polymer Science, 2008, 107, 1718-1723.                                                                | 2.6 | 29        |
| 114 | Intercalation process and rubber–filler interactions of polybutadiene rubber/organoclay nanocomposites. Journal of Applied Polymer Science, 2008, 107, 650-657.                                                  | 2.6 | 23        |
| 115 | Morphology and properties of silaneâ€modified montmorillonite clays and clay/PBT composites. Journal of Applied Polymer Science, 2008, 110, 550-557.                                                             | 2.6 | 40        |
| 116 | Polyamide 6/maleated ethylene–propylene–diene rubber/organoclay composites with or without<br>glycidyl methacrylate as a compatibilizer. Journal of Applied Polymer Science, 2008, 110, 1870-1879.               | 2.6 | 9         |
| 117 | Surface Characteristics of Polyhedral Oligomeric Silsesquioxane Modified Clay and Its Application in Polymerization of Macrocyclic Polyester Oligomers. Journal of Physical Chemistry B, 2008, 112, 11915-11922. | 2.6 | 49        |
| 118 | Thermal stability, flame retardancy and rheological behavior of ABS filled with magnesium hydroxide sulfate hydrate whisker. Polymer Bulletin, 2007, 58, 747-755.                                                | 3.3 | 28        |
| 119 | Microstructure, Interfacial Interactions, and Rheological Properties of PC/AES/Montmorillonite<br>Composites. Journal of Macromolecular Science - Physics, 2006, 45, 1159-1169.                                  | 1.0 | 3         |
| 120 | Rheological Properties and Morphology of PC/AES Blends. Journal of Macromolecular Science -<br>Physics, 2006, 45, 987-1004.                                                                                      | 1.0 | 4         |
| 121 | Crystallization Behaviour and Mechanical Properties of Polypropylene Copolymer/Silicon Dioxide Nanocomposites. Polymers and Polymer Composites, 2006, 14, 145-154.                                               | 1.9 | 2         |
| 122 | Effect of Epoxy Modifier on Flame Retardancy and Rheological Behaviour of ABS/Montmorillonite<br>Composites. Polymers and Polymer Composites, 2006, 14, 805-812.                                                 | 1.9 | 1         |
| 123 | Effect of silicon dioxide on crystallization and melting behavior of polypropylene. Journal of Applied<br>Polymer Science, 2006, 100, 1889-1898.                                                                 | 2.6 | 34        |
| 124 | Fracture behavior of PVC/Blendex/nano-CaCO3 composites. Journal of Applied Polymer Science, 2005, 953-961.                                                                                                       | 2.6 | 21        |
| 125 | Fibre Orientation and Mechanical Properties of Short Glass Fibre Reinforced PP Composites. Polymers and Polymer Composites, 2005, 13, 253-262.                                                                   | 1.9 | 5         |
| 126 | Investigation of Melt-Intercalated PET-Clay Nanocomposites. Polymers and Polymer Composites, 2004, 12, 619-625.                                                                                                  | 1.9 | 5         |

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Effect of nano-CaCO3 on mechanical properties of PVC and PVC/Blendex blend. Polymer Testing, 2004, 23, 169-174.                                                                                  | 4.8 | 130       |
| 128 | Morphology and fracture behavior of toughening-modified poly(vinyl chloride)/organophilic<br>montmorillonite composites. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 286-295. | 2.1 | 19        |
| 129 | Processing thermal stability and degradation kinetics of poly(vinyl chloride)/montmorillonite composites. Journal of Applied Polymer Science, 2004, 92, 1521-1526.                               | 2.6 | 31        |
| 130 | Effect of alkyl quaternary ammonium on processing discoloration of melt-intercalated PVC-montmorillonite composites. Polymer Testing, 2004, 23, 299-306.                                         | 4.8 | 69        |
| 131 | Effect of epoxy resin on morphology and physical properties of PVC/organophilic montmorillonite nanocomposites. Journal of Applied Polymer Science, 2003, 89, 2184-2191.                         | 2.6 | 34        |
| 132 | Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polymer Testing, 2003, 22, 453-461.                                                       | 4.8 | 226       |