
P M Edwards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2910620/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Four Carbon Organonitrate as a Significant Product of Secondary Isoprene Chemistry. Geophysical Research Letters, 2022, 49, .	4.0	8
2	Key Role of NO ₃ Radicals in the Production of Isoprene Nitrates and Nitrooxyorganosulfates in Beijing. Environmental Science & Technology, 2021, 55, 842-853.	10.0	18
3	Low-NO atmospheric oxidation pathways in a polluted megacity. Atmospheric Chemistry and Physics, 2021, 21, 1613-1625.	4.9	24
4	Assessing the sources of particles at an urban background site using both regulatory instruments and low-cost sensors – a comparative study. Atmospheric Measurement Techniques, 2021, 14, 4139-4155.	3.1	14
5	In situ ozone production is highly sensitive to volatile organic compounds in Delhi, India. Atmospheric Chemistry and Physics, 2021, 21, 13609-13630.	4.9	28
6	Nighttime Chemical Transformation in Biomass Burning Plumes: A Box Model Analysis Initialized with Aircraft Observations. Environmental Science & Technology, 2019, 53, 2529-2538.	10.0	68
7	Hydrocarbon Removal in Power Plant Plumes Shows Nitrogen Oxide Dependence of Hydroxyl Radicals. Geophysical Research Letters, 2019, 46, 7752-7760.	4.0	9
8	An improved low-power measurement of ambient NO ₂ and O ₃ combining electrochemical sensor clusters and machine learning. Atmospheric Measurement Techniques, 2019, 12, 1325-1336.	3.1	30
9	Role of Criegee Intermediates in Secondary Sulfate Aerosol Formation in Nocturnal Power Plant Plumes in the Southeast US. ACS Earth and Space Chemistry, 2019, 3, 748-759.	2.7	16
10	An Odd Oxygen Framework for Wintertime Ammonium Nitrate Aerosol Pollution in Urban Areas: NO _x and VOC Control as Mitigation Strategies. Geophysical Research Letters, 2019, 46, 4971-4979.	4.0	80
11	Impacts of bromine and iodine chemistry on tropospheric OH and HO ₂ : comparing observations with box and global model perspectives. Atmospheric Chemistry and Physics, 2018, 18, 3541-3561.	4.9	24
12	Secondary organic aerosol (SOA) yields from NO ₃ radical + isoprene based on nighttime aircraft power plant plume transects. Atmospheric Chemistry and Physics, 2018, 18, 11663-11682.	4.9	47
13	Clustering approaches to improve the performance of low cost air pollution sensors. Faraday Discussions, 2017, 200, 621-637.	3.2	32
14	Transition from high- to low-NOx control of night-time oxidation in the southeastern US. Nature Geoscience, 2017, 10, 490-495.	12.9	56
15	A new diagnostic for tropospheric ozone production. Atmospheric Chemistry and Physics, 2017, 17, 13669-13680.	4.9	6
16	A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor. Atmospheric Measurement Techniques, 2016, 9, 423-440.	3.1	93
17	Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013. Atmospheric Measurement Techniques, 2016, 9, 3063-3093.	3.1	58
18	Measurement of OH reactivity by laser flash photolysis coupled with laser-induced fluorescence spectroscopy. Atmospheric Measurement Techniques, 2016, 9, 2827-2844.	3.1	22

P M EDWARDS

#	Article	IF	CITATIONS
19	Validate personal air-pollution sensors. Nature, 2016, 535, 29-31.	27.8	204
20	Influence of oil and gas emissions on summertime ozone in the Colorado Northern Front Range. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8712-8729.	3.3	86
21	Reactive nitrogen partitioning and its relationship to winter ozone events in Utah. Atmospheric Chemistry and Physics, 2016, 16, 573-583.	4.9	24
22	Evaluating the performance of low cost chemical sensors for air pollution research. Faraday Discussions, 2016, 189, 85-103.	3.2	143
23	Understanding high wintertime ozone pollution events in an oil- and natural gas-producing region of the western US. Atmospheric Chemistry and Physics, 2015, 15, 411-429.	4.9	154
24	Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region. Atmospheric Chemistry and Physics, 2015, 15, 1975-1993.	4.9	57
25	Peroxynitric acid (HO ₂ NO ₂) measurements during the UBWOS 2013 and 2014 studies using iodide ion chemical ionization mass spectrometry. Atmospheric Chemistry and Physics. 2015. 15. 8101-8114.	4.9	33
26	Photochemical aging of volatile organic compounds associated with oil and natural gas extraction in the Uintah Basin, UT, during a wintertime ozone formation event. Atmospheric Chemistry and Physics, 2015, 15, 5727-5741.	4.9	33
27	Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO ₃ Oxidation of Biogenic Hydrocarbons. Environmental Science & Technology, 2014, 48, 11944-11953.	10.0	178
28	High winter ozone pollution from carbonyl photolysis in an oil and gas basin. Nature, 2014, 514, 351-354.	27.8	265
29	A Measurement of Total Reactive Nitrogen, NO _{<i>y</i>} , together with NO ₂ , NO, and O ₃ via Cavity Ring-down Spectroscopy. Environmental Science & Technology, 2014, 48, 9609-9615.	10.0	75
30	Chlorine as a primary radical: evaluation of methods to understand its role in initiation of oxidative cycles. Atmospheric Chemistry and Physics, 2014, 14, 3427-3440.	4.9	90
31	Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition. Atmospheric Chemistry and Physics, 2014, 14, 10977-10988.	4.9	98
32	Ozone photochemistry in an oil and natural gas extraction region during winter: simulations of a snow-free season in the Uintah Basin, Utah. Atmospheric Chemistry and Physics, 2013, 13, 8955-8971.	4.9	100
33	A global model study of the impact of land-use change in Borneo on atmospheric composition. Atmospheric Chemistry and Physics, 2013, 13, 9183-9194.	4.9	16
34	OH reactivity in a South East Asian tropical rainforest during the Oxidant and Particle Photochemical Processes (OP3) project. Atmospheric Chemistry and Physics, 2013, 13, 9497-9514.	4.9	73
35	Photochemical aging of volatile organic compounds in the Los Angeles basin: Weekdayâ€weekend effect. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5018-5028.	3.3	54
36	DOAS measurements of formaldehyde and glyoxal above a south-east Asian tropical rainforest. Atmospheric Chemistry and Physics, 2012, 12, 5949-5962.	4.9	49

P M EDWARDS

#	Article	IF	CITATIONS
37	Impacts of HO _x regeneration and recycling in the oxidation of isoprene: Consequences for the composition of past, present and future atmospheres. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	78
38	Quantifying the magnitude of a missing hydroxyl radical source in a tropical rainforest. Atmospheric Chemistry and Physics, 2011, 11, 7223-7233.	4.9	195
39	lsoprene oxidation mechanisms: measurements and modelling of OH and HO ₂ over a South-East Asian tropical rainforest during the OP3 field campaign. Atmospheric Chemistry and Physics, 2011, 11, 6749-6771.	4.9	88
40	Hydrogen oxide photochemistry in the northern Canadian spring time boundary layer. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	11
41	The atmospheric chemistry of trace gases and particulate matter emitted by different land uses in Borneo. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3177-3195.	4.0	36
42	Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools. Atmospheric Chemistry and Physics, 2010, 10, 169-199.	4.9	130
43	Simulating atmospheric composition over a South-East Asian tropical rainforest: performance of a chemistry box model. Atmospheric Chemistry and Physics, 2010, 10, 279-298.	4.9	132
44	Corrigendum to "Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools" published in Atmos. Chem. Phys., 10, 169–199, 2010. Atmospheric Chemistry and Physics, 2010, 10, 563-563.	4.9	5
45	Measurements of nitrogen oxides from Hudson Bay: Implications for NOx release from snow and ice covered surfaces. Atmospheric Environment, 2010, 44, 2971-2979.	4.1	6
46	Evidence of reactive iodine chemistry in the Arctic boundary layer. Journal of Geophysical Research, 2010, 115, .	3.3	76
47	A flow-tube based laser-induced fluorescence instrument to measure OH reactivity in the troposphere. Atmospheric Measurement Techniques, 2009, 2, 465-477.	3.1	73
48	Measurement and calculation of OH reactivity at a United Kingdom coastal site. Journal of Atmospheric Chemistry, 2009, 64, 53-76.	3.2	38
49	Unexpected Fast Photochemistry Emerges in Cool Seasons China. , 0, , .		0