Kai Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2909366/publications.pdf

Version: 2024-02-01

72 papers 16,047 citations

30 h-index 71 g-index

76 all docs

76
docs citations

76 times ranked 36664 citing authors

#	Article	IF	CITATIONS
1	A comprehensive molecular cytogenetic analysis of the genome architecture in modern sugarcane cultivars. Chromosome Research, 2022, 30, 29-41.	1.0	7
2	Genome-wide identification and characterization of the CLASP_N gene family in upland cotton (Gossypium hirsutum L.). PeerJ, 2022, 10, e12733.	0.9	2
3	Genome-wide analysis reveals the spatiotemporal expression patterns of SOS3 genes in the maize B73 genome in response to salt stress. BMC Genomics, 2022, 23, 60.	1.2	2
4	Characterization of Repetitive DNA in Saccharum officinarum and Saccharum spontaneum by Genome Sequencing and Cytological Assays. Frontiers in Plant Science, 2022, 13, 814620.	1.7	1
5	Genome-wide identification and analysis of the GUB_WAK_bind gene family in Gossypium hirsutum. Molecular Biology Reports, 2022, , $1.$	1.0	0
6	The genome and gene editing system of sea barleygrass provideÂa novel platform for cereal domestication and stress tolerance studies. Plant Communications, 2022, 3, 100333.	3.6	8
7	Brachypodium: 20 years as a grass biology model system; the way forward?. Trends in Plant Science, 2022, 27, 1002-1016.	4.3	21
8	Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding. Plant Communications, 2022, 3, 100350.	3.6	14
9	Optimization of protoplast isolation, transformation and its application in sugarcane (Saccharum) Tj ETQq $1\ 1\ 0.75$	34314 rgB	T ₃₂ Overlock
10	Considerations regarding centromere assembly in plant whole-genome sequencing. Methods, 2021, 187, 54-56.	1.9	5
11	The formation and evolution of centromeric satellite repeats in <i>Saccharum</i> species. Plant Journal, 2021, 106, 616-629.	2.8	24
12	Genomeâ€Wide Identification of DNase I Hypersensitive Sites in Plants. Current Protocols, 2021, 1, e148.	1.3	4
13	Transcriptome analysis reveals genes potentially related to high fiber strength in a <i>Gossypium hirsutum</i> line IL9 with <i>Gossypium mustelinum</i> introgression. Genome, 2021, 64, 985-995.	0.9	3
14	Chromosome Painting Provides Insights Into the Genome Structure and Evolution of Sugarcane. Frontiers in Plant Science, 2021, 12, 731664.	1.7	13
15	Megabase-scale presence-absence variation with Tripsacum origin was under selection during maize domestication and adaptation. Genome Biology, 2021, 22, 237.	3.8	21
16	<i>Verticillium dahliae</i> effector VDAL protects MYB6 from degradation by interacting with PUB25 and PUB26 E3 ligases to enhance Verticillium wilt resistance. Plant Cell, 2021, 33, 3675-3699.	3.1	39
17	Characterization of a Saccharum spontaneum with a basic chromosome number of x = 10 provides new insights on genome evolution in genus Saccharum. Theoretical and Applied Genetics, 2020, 133, 187-199.	1.8	42
18	Species-specific abundant retrotransposons elucidate the genomic composition of modern sugarcane cultivars. Chromosoma, 2020, 129, 45-55.	1.0	12

#	Article	IF	Citations
19	The water lily genome and the early evolution of flowering plants. Nature, 2020, 577, 79-84.	13.7	238
20	Progressive refinement of the karyotyping of <i>Brachypodium</i> genomes. New Phytologist, 2020, 227, 1668-1675.	3.5	8
21	Genome-Wide Characterization of DNase I-Hypersensitive Sites and Cold Response Regulatory Landscapes in Grasses. Plant Cell, 2020, 32, 2457-2473.	3.1	29
22	Arabidopsis thaliana trehalose-6-phosphate phosphatase gene TPPI enhances drought tolerance by regulating stomatal apertures. Journal of Experimental Botany, 2020, 71, 4285-4297.	2.4	55
23	Horizontal gene transfer of <i>Fhb7</i> from fungus underlies <i>Fusarium</i> head blight resistance in wheat. Science, 2020, 368, .	6.0	398
24	Genome-Wide Identification of Regulatory DNA Elements in Crop Plants. Methods in Molecular Biology, 2020, 2072, 85-99.	0.4	1
25	The wild sweetpotato (Ipomoea trifida) genome provides insights into storage root development. BMC Plant Biology, 2019, 19, 119.	1.6	33
26	Optimization of Mature Embryo-Based Tissue Culture and Agrobacterium-Mediated Transformation in Model Grass Brachypodium distachyon. International Journal of Molecular Sciences, 2019, 20, 5448.	1.8	7
27	Overexpression of the trehalose-6-phosphate phosphatase family gene AtTPPF improves the drought tolerance of Arabidopsis thaliana. BMC Plant Biology, 2019, 19, 381.	1.6	70
28	Genome-Wide Identification, Evolution, and Expression Analysis of TPS and TPP Gene Families in Brachypodium distachyon. Plants, 2019, 8, 362.	1.6	13
29	Centromere histone H3- and phospholipase-mediated haploid induction in plants. Plant Methods, 2019, 15, 42.	1.9	29
30	Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature Genetics, 2019, 51, 739-748.	9.4	568
31	Genomeâ€wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed. Plant Biotechnology Journal, 2019, 17, 1998-2010.	4.1	54
32	Centromeric <scp>DNA</scp> characterization in the model grass <i>Brachypodium distachyon</i> provides insights on the evolution of the genus. Plant Journal, 2018, 93, 1088-1101.	2.8	28
33	3C and 3C-based techniques: the powerful tools for spatial genome organization deciphering. Molecular Cytogenetics, 2018, 11, 21.	0.4	61
34	New insights into the evolution and functional divergence of the SWEET family in Saccharum based on comparative genomics. BMC Plant Biology, 2018, 18, 270.	1.6	42
35	Comprehensively Characterizing the Cytological Features of Saccharum spontaneum by the Development of a Complete Set of Chromosome-Specific Oligo Probes. Frontiers in Plant Science, 2018, 9, 1624.	1.7	42
36	Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L Nature Genetics, 2018, 50, 1565-1573.	9.4	463

#	Article	IF	Citations
37	Comparative Analysis of Homologous Sequences of Saccharum officinarum and Saccharum spontaneum Reveals Independent Polyploidization Events. Frontiers in Plant Science, 2018, 9, 1414.	1.7	3
38	Development and Applications of Chromosome-Specific Cytogenetic BAC-FISH Probes in S. spontaneum. Frontiers in Plant Science, 2018, 9, 218.	1.7	23
39	Global Involvement of Lysine Crotonylation in Protein Modification and Transcription Regulation in Rice. Molecular and Cellular Proteomics, 2018, 17, 1922-1936.	2.5	62
40	Isolation and characterization of centromeric repetitive DNA sequences in Saccharum spontaneum. Scientific Reports, 2017, 7, 41659.	1.6	31
41	The Aegilops tauschii genome reveals multiple impacts of transposons. Nature Plants, 2017, 3, 946-955.	4.7	164
42	Chromosome Nomenclature and Cytological Characterization of Sacred Lotus. Cytogenetic and Genome Research, 2017, 153, 223-231.	0.6	12
43	Chromatin states responsible for the regulation of differentially expressed genes under $60\text{Co-}\hat{l}^3$ ray radiation in rice. BMC Genomics, 2017, 18, 778.	1.2	12
44	Chromosome Preparation in Rice (Oryza sativa). Current Protocols in Plant Biology, 2016, 1, 67-77.	2.8	4
45	Rapid proliferation and nucleolar organizer targeting centromeric retrotransposons in cotton. Plant Journal, 2016, 88, 992-1005.	2.8	33
46	In Situ Hybridization in Rice (Oryza sativ a). Current Protocols in Plant Biology, 2016, 1, 89-106.	2.8	2
47	Comprehensive cytological characterization of the Gossypium hirsutum genome based on the development of a set of chromosome cytological markers. Crop Journal, 2016, 4, 256-265.	2.3	7
48	Gene Expression and Chromatin Modifications Associated with Maize Centromeres. G3: Genes, Genomes, Genetics, 2016, 6, 183-192.	0.8	30
49	A and D genomes spatial separation at somatic metaphase in tetraploid cotton: evidence for genomic disposition in a polyploid plant. Plant Journal, 2015, 84, 1167-1177.	2.8	13
50	Stable Patterns of CENH3 Occupancy Through Maize Lineages Containing Genetically Similar Centromeres. Genetics, 2015, 200, 1105-1116.	1.2	20
51	The pineapple genome and the evolution of CAM photosynthesis. Nature Genetics, 2015, 47, 1435-1442.	9.4	472
52	Distinct Copy Number, Coding Sequence, and Locus Methylation Patterns Underlie Rhg1-Mediated Soybean Resistance to Soybean Cyst Nematode Â. Plant Physiology, 2014, 165, 630-647.	2.3	136
53	Maize centromeres expand and adopt a uniform size in the genetic background of oat. Genome Research, 2014, 24, 107-116.	2.4	77
54	Construction of a complete set of alien chromosome addition lines from Gossypium australe in Gossypium hirsutum: morphological, cytological, and genotypic characterization. Theoretical and Applied Genetics, 2014, 127, 1105-1121.	1.8	34

#	Article	IF	Citations
55	Identification of centromeric regions on the linkage map of cotton using centromere-related repeats. Genomics, 2014, 104, 587-593.	1.3	15
56	Boom-Bust Turnovers of Megabase-Sized Centromeric DNA in <i>Solanum</i> Species: Rapid Evolution of DNA Sequences Associated with Centromeres Â. Plant Cell, 2014, 26, 1436-1447.	3.1	73
57	Systematic Application of DNA Fiber-FISH Technique in Cotton. PLoS ONE, 2013, 8, e75674.	1.1	25
58	Repeatless and Repeat-Based Centromeres in Potato: Implications for Centromere Evolution Â. Plant Cell, 2012, 24, 3559-3574.	3.1	221
59	Copy Number Variation of Multiple Genes at <i>Rhg1</i> Mediates Nematode Resistance in Soybean. Science, 2012, 338, 1206-1209.	6.0	535
60	Localization of high level of sequence conservation and divergence regions in cotton. Theoretical and Applied Genetics, 2012, 124, 1173-1182.	1.8	11
61	Stable integration of an engineered megabase repeat array into the maize genome. Plant Journal, 2012, 70, 357-365.	2.8	17
62	Structure and size variations between 12A and 12D homoeologous chromosomes based on high-resolution cytogenetic map in allotetraploid cotton. Chromosoma, 2010, 119, 255-266.	1.0	32
63	ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 2010, 38, e164-e164.	6.5	10,960
64	Higher axial-resolution and sensitivity pachytene fluorescence in situ hybridization protocol in tetraploid cotton. Chromosome Research, 2009, 17, 1041-1050.	1.0	15
65	Establishment of a Multiâ€color Genomic <i>in situ</i> Hybridization Technique to Simultaneously Discriminate the Three Interspecific Hybrid Genomes in <i>Gossypium</i> Journal of Integrative Plant Biology, 2008, 50, 345-351.	4.1	10
66	Completely Distinguishing Individual A-Genome Chromosomes and Their Karyotyping Analysis by Multiple Bacterial Artificial Chromosome–Fluorescence ⟨i⟩in Situ⟨/i⟩ Hybridization. Genetics, 2008, 178, 1117-1122.	1.2	39
67	A Microsatellite-Based, Gene-Rich Linkage Map Reveals Genome Structure, Function and Evolution in Gossypium. Genetics, 2007, 176, 527-541.	1.2	265
68	Detection and mapping of homologous and homoeologous segments in homoeologous groups of allotetraploid cotton by BAC-FISH. BMC Genomics, 2007, 8, 178.	1.2	24
69	Development of one set of chromosome-specific microsatellite-containing BACs and their physical mapping in Gossypium hirsutum L Theoretical and Applied Genetics, 2007, 115, 675-682.	1.8	48
70	Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theoretical and Applied Genetics, 2006, 113, 73-80.	1.8	147
71	A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. and Gossypium barbadense L Genome, 2005, 48, 378-390.	0.9	75
72	Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton., 0,.		1