
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2908998/publications.pdf Version: 2024-02-01

HENDIK COÃONBERC

#	Article	IF	CITATIONS
1	Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, 518, 197-206.	13.7	3,823
2	Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics, 2010, 42, 937-948.	9.4	2,634
3	Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 2014, 46, 1173-1186.	9.4	1,818
4	A common variant associated with prostate cancer in European and African populations. Nature Genetics, 2006, 38, 652-658.	9.4	738
5	Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nature Genetics, 2018, 50, 928-936.	9.4	652
6	Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nature Genetics, 2013, 45, 385-391.	9.4	492
7	A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nature Genetics, 2014, 46, 1103-1109.	9.4	408
8	Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncology, The, 2020, 21, 222-232.	5.1	364
9	Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nature Genetics, 2008, 40, 281-283.	9.4	357
10	The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study. PLoS Genetics, 2015, 11, e1005378.	1.5	331
11	Prostate cancer screening in men aged 50–69 years (STHLM3): a prospective population-based diagnostic study. Lancet Oncology, The, 2015, 16, 1667-1676.	5.1	308
12	Ovarian Cancer Risk After Salpingectomy: A Nationwide Population-Based Study. Journal of the National Cancer Institute, 2015, 107, dju410-dju410.	3.0	300
13	Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nature Genetics, 2021, 53, 65-75.	9.4	264
14	Targeted Prostate Cancer Screening in BRCA1 and BRCA2 Mutation Carriers: Results from the Initial Screening Round of the IMPACT Study. European Urology, 2014, 66, 489-499.	0.9	195
15	MRI-Targeted or Standard Biopsy in Prostate Cancer Screening. New England Journal of Medicine, 2021, 385, 908-920.	13.9	184
16	<i>PALB2</i> , <i>CHEK2</i> and <i>ATM</i> rare variants and cancer risk: data from COGS. Journal of Medical Genetics, 2016, 53, 800-811.	1.5	174
17	Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discovery, 2016, 6, 1052-1067.	7.7	157
18	Comparison Between the Four-kallikrein Panel and Prostate Health Index for Predicting Prostate Cancer. European Urology, 2015, 68, 139-146.	0.9	156

#	Article	IF	CITATIONS
19	Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts. BMJ: British Medical Journal, 2018, 360, j5757.	2.4	153
20	Interim Results from the IMPACT Study: Evidence for Prostate-specific Antigen Screening in BRCA2 Mutation Carriers. European Urology, 2019, 76, 831-842.	0.9	148
21	Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge. Nature Medicine, 2022, 28, 154-163.	15.2	143
22	Prostate-specific antigen (PSA) density in the diagnostic algorithm of prostate cancer. Prostate Cancer and Prostatic Diseases, 2018, 21, 57-63.	2.0	134
23	Genetic determinants of telomere length and risk of common cancers: a Mendelian randomization study. Human Molecular Genetics, 2015, 24, 5356-5366.	1.4	128
24	Gene regulatory mechanisms underpinning prostate cancer susceptibility. Nature Genetics, 2016, 48, 387-397.	9.4	119
25	<i>TP53</i> Outperforms Other Androgen Receptor Biomarkers to Predict Abiraterone or Enzalutamide Outcome in Metastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2019, 25, 1766-1773.	3.2	117
26	Physical Activity and Survival among Men Diagnosed with Prostate Cancer. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 57-64.	1.1	115
27	Comprehensive Profiling of the Androgen Receptor in Liquid Biopsies from Castration-resistant Prostate Cancer Reveals Novel Intra-AR Structural Variation and Splice Variant Expression Patterns. European Urology, 2017, 72, 192-200.	0.9	106
28	Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations. Cancer Research, 2016, 76, 5103-5114.	0.4	100
29	Adjuvant chemotherapy in colorectal cancer: A joint analysis of randomised trials by the Nordic Gastrointestinal Tumour Adjuvant Therapy Group. Acta Oncológica, 2005, 44, 904-912.	0.8	94
30	Cell-free DNA profiling of metastatic prostate cancer reveals microsatellite instability, structural rearrangements and clonal hematopoiesis. Genome Medicine, 2018, 10, 85.	3.6	94
31	Two susceptibility loci identified for prostate cancer aggressiveness. Nature Communications, 2015, 6, 6889.	5.8	88
32	Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nature Communications, 2018, 9, 2256.	5.8	88
33	Shared heritability and functional enrichment across six solid cancers. Nature Communications, 2019, 10, 431.	5.8	88
34	Prostate cancer screening using a combination of risk-prediction, MRI, and targeted prostate biopsies (STHLM3-MRI): a prospective, population-based, randomised, open-label, non-inferiority trial. Lancet Oncology, The, 2021, 22, 1240-1249.	5.1	83
35	Differential impact of RB status on E2F1 reprogramming in human cancer. Journal of Clinical Investigation, 2017, 128, 341-358.	3.9	83
36	Tracking the Origin of Metastatic Prostate Cancer. European Urology, 2015, 67, 819-822.	0.9	79

#	Article	IF	CITATIONS
37	The effects of height and BMI on prostate cancer incidence and mortality: a Mendelian randomization study in 20,848 cases and 20,214 controls from the PRACTICAL consortium. Cancer Causes and Control, 2015, 26, 1603-1616.	0.8	77
38	Prostate Cancer Diagnostics Using a Combination of the Stockholm3 Blood Test and Multiparametric Magnetic Resonance Imaging. European Urology, 2018, 74, 722-728.	0.9	70
39	Blood lipids and prostate cancer: a Mendelian randomization analysis. Cancer Medicine, 2016, 5, 1125-1136.	1.3	68
40	The Stockholm-3 Model for Prostate Cancer Detection: Algorithm Update, Biomarker Contribution, and Reflex Test Potential. European Urology, 2018, 74, 204-210.	0.9	68
41	Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans. Human Molecular Genetics, 2015, 24, 5589-5602.	1.4	67
42	The risk of prostate cancer for men on aspirin, statin or antidiabetic medications. European Journal of Cancer, 2015, 51, 725-733.	1.3	61
43	A Large-Scale Analysis of Genetic Variants within Putative miRNA Binding Sites in Prostate Cancer. Cancer Discovery, 2015, 5, 368-379.	7.7	56
44	Prediction of individual genetic risk to prostate cancer using a polygenic score. Prostate, 2015, 75, 1467-1474.	1.2	54
45	Integration of multiethnic fine-mapping and genomic annotation to prioritize candidate functional SNPs at prostate cancer susceptibility regions. Human Molecular Genetics, 2015, 24, 5603-5618.	1.4	50
46	Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation. Nature Communications, 2016, 7, 10979.	5.8	50
47	Telomere structure and maintenance gene variants and risk of five cancer types. International Journal of Cancer, 2016, 139, 2655-2670.	2.3	43
48	Germline variation at 8q24 and prostate cancer risk in men of European ancestry. Nature Communications, 2018, 9, 4616.	5.8	43
49	Expression levels of long non-coding RNAs are prognostic for AML outcome. Journal of Hematology and Oncology, 2018, 11, 52.	6.9	43
50	Pubertal development and prostate cancer risk: Mendelian randomization study in a population-based cohort. BMC Medicine, 2016, 14, 66.	2.3	42
51	The Stockholm-3 (STHLM3) Model can Improve Prostate Cancer Diagnostics in Men Aged 50–69 yr Compared with Current Prostate Cancer Testing. European Urology Focus, 2018, 4, 707-710.	1.6	42
52	Polygenic hazard score is associated with prostate cancer in multi-ethnic populations. Nature Communications, 2021, 12, 1236.	5.8	40
53	Public interest in and acceptability of the prospect of risk-stratified screening for breast and prostate cancer. Acta Oncológica, 2016, 55, 45-51.	0.8	39
54	Rare Germline Variants in ATM Predispose to Prostate Cancer: A PRACTICAL Consortium Study. European Urology Oncology, 2021, 4, 570-579.	2.6	38

#	Article	IF	CITATIONS
55	Body mass index and mortality in men with prostate cancer. Prostate, 2015, 75, 1129-1136.	1.2	37
56	Translating a Prognostic DNA Genomic Classifier into the Clinic: Retrospective Validation in 563 Localized Prostate Tumors. European Urology, 2017, 72, 22-31.	0.9	37
57	Fine-Mapping the HOXB Region Detects Common Variants Tagging a Rare Coding Allele: Evidence for Synthetic Association in Prostate Cancer. PLoS Genetics, 2014, 10, e1004129.	1.5	34
58	Determining breast cancer histological grade from RNA-sequencing data. Breast Cancer Research, 2016, 18, 48.	2.2	34
59	Mediterranean Diet Score and prostate cancer risk in a Swedish population-based case–control study. Journal of Nutritional Science, 2013, 2, e15.	0.7	32
60	A Genetic Score Can Identify Men at High Risk for Prostate Cancer Among Men With Prostate-Specific Antigen of 1–3 ng/ml. European Urology, 2014, 65, 1184-1190.	0.9	32
61	Prevalence of <i>BRCA1</i> and <i>BRCA2</i> pathogenic variants in a large, unselected breast cancer cohort. International Journal of Cancer, 2019, 144, 1195-1204.	2.3	31
62	Summary statement on screening for prostate cancer in Europe. International Journal of Cancer, 2018, 142, 741-746.	2.3	29
63	Alcohol consumption and prostate cancer incidence and progression: A Mendelian randomisation study. International Journal of Cancer, 2017, 140, 75-85.	2.3	28
64	Genome-Wide Association Study of Prostate Cancer–Specific Survival. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1796-1800.	1.1	27
65	Risk of Prostate Cancer in Men Treated With 5α-Reductase Inhibitors—A Large Population-Based Prospective Study. Journal of the National Cancer Institute, 2018, 110, 1216-1221.	3.0	27
66	Effects of pre-notification, invitation length, questionnaire length and reminder on participation rate: a quasi-randomised controlled trial. BMC Medical Research Methodology, 2018, 18, 3.	1.4	27
67	A Genetic Risk Score to Personalize Prostate Cancer Screening, Applied to Population Data. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1731-1738.	1.1	27
68	Assessing the role of insulinâ€like growth factors and binding proteins in prostate cancer using Mendelian randomization: Genetic variants as instruments for circulating levels. International Journal of Cancer, 2016, 139, 1520-1533.	2.3	26
69	Body mass index in relation to serum prostateâ€specific antigen levels and prostate cancer risk. International Journal of Cancer, 2016, 139, 50-57.	2.3	25
70	Evaluation of Exome Sequencing to Estimate Tumor Burden in Plasma. PLoS ONE, 2014, 9, e104417.	1.1	25
71	Polyunsaturated fatty acids and prostate cancer risk: a Mendelian randomisation analysis from the PRACTICAL consortium. British Journal of Cancer, 2016, 115, 624-631.	2.9	23
72	Circulating Metabolic Biomarkers of Screen-Detected Prostate Cancer in the ProtecT Study. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 208-216.	1.1	21

#	Article	IF	CITATIONS
73	A differential protein solubility approach for the depletion of highly abundant proteins in plasma using ammonium sulfate. Analyst, The, 2015, 140, 8109-8117.	1.7	20
74	Largeâ€scale evaluation of SLC18A2 in prostate cancer reveals diagnostic and prognostic biomarker potential at three molecular levels. Molecular Oncology, 2016, 10, 825-837.	2.1	20
75	Genetic profile of ductal adenocarcinoma of the prostate. Human Pathology, 2017, 69, 1-7.	1.1	20
76	Bioinformatoryâ€assisted analysis of nextâ€generation sequencing data for precision medicine in pancreatic cancer. Molecular Oncology, 2017, 11, 1413-1429.	2.1	20
77	The Stockholm3 blood-test predicts clinically-significant cancer on biopsy: independent validation in a multi-center community cohort. Prostate Cancer and Prostatic Diseases, 2019, 22, 137-142.	2.0	20
78	DGGE screening of mutations in mismatch repair genes (hMSH2 and hMLH1) in 34 Swedish families with colorectal cancer. Clinical Genetics, 1998, 53, 131-135.	1.0	19
79	The economic burden of prostate cancer – a Swedish prevalence-based register study. BMC Health Services Research, 2020, 20, 448.	0.9	19
80	The In Vitro Stability of Circulating Tumour DNA. PLoS ONE, 2016, 11, e0168153.	1.1	18
81	Association of 5α-Reductase Inhibitors With Prostate Cancer Mortality. JAMA Oncology, 2022, 8, 1019.	3.4	18
82	Sequencing-based breast cancer diagnostics as an alternative to routine biomarkers. Scientific Reports, 2016, 6, 38037.	1.6	17
83	Investigating the possible causal role of coffee consumption with prostate cancer risk and progression using Mendelian randomization analysis. International Journal of Cancer, 2017, 140, 322-328.	2.3	17
84	Androgen Receptor Burden and Poor Response to Abiraterone or Enzalutamide in <i>TP53</i> Wild-Type Metastatic Castration-Resistant Prostate Cancer. JAMA Oncology, 2019, 5, 1060.	3.4	17
85	Total antioxidant intake and prostate cancer in the Cancer of the Prostate in Sweden (CAPS) study. A case control study. BMC Cancer, 2016, 16, 438.	1.1	16
86	The roles of stress and social support in prostate cancer mortality. Scandinavian Journal of Urology, 2016, 50, 47-55.	0.6	16
87	The CHEK2 Variant C.349A>G Is Associated with Prostate Cancer Risk and Carriers Share a Common Ancestor. Cancers, 2020, 12, 3254.	1.7	16
88	The ProBio trial: molecular biomarkers for advancing personalized treatment decision in patients with metastatic castration-resistant prostate cancer. Trials, 2020, 21, 579.	0.7	16
89	Additional SNPs improve risk stratification of a polygenic hazard score for prostate cancer. Prostate Cancer and Prostatic Diseases, 2021, 24, 532-541.	2.0	16
90	A population-based study on the association between educational length, prostate-specific antigen testing and use of prostate biopsies. Scandinavian Journal of Urology, 2016, 50, 104-109.	0.6	15

#	Article	IF	CITATIONS
91	Molecular Differences between Screen-Detected and Interval Breast Cancers Are Largely Explained by PAM50 Subtypes. Clinical Cancer Research, 2017, 23, 2584-2592.	3.2	15
92	Development and Validation of a Novel RNA Sequencing–Based Prognostic Score for Acute Myeloid Leukemia. Journal of the National Cancer Institute, 2018, 110, 1094-1101.	3.0	15
93	The impact of different prostate-specific antigen (PSA) testing intervals on Gleason score at diagnosis and the risk of experiencing false-positive biopsy recommendations: a population-based cohort study. BMJ Open, 2019, 9, e027958.	0.8	15
94	Intensity of Active Surveillance and Transition to Treatment in Men with Low-risk Prostate Cancer. European Urology Oncology, 2020, 3, 640-647.	2.6	15
95	Detection of Prostate Cancer Using a Multistep Approach with Prostate-specific Antigen, the Stockholm 3 Test, and Targeted Biopsies: The STHLM3 MRI Project. European Urology Focus, 2017, 3, 526-528.	1.6	14
96	The effect of sample size on polygenic hazard models for prostate cancer. European Journal of Human Genetics, 2020, 28, 1467-1475.	1.4	14
97	Prostate cancer risk stratification improvement across multiple ancestries with new polygenic hazard score. Prostate Cancer and Prostatic Diseases, 2022, 25, 755-761.	2.0	14
98	Repeat Prostate-Specific Antigen Tests Before Prostate Biopsy Decisions. Journal of the National Cancer Institute, 2016, 108, djw165.	3.0	13
99	A Unified Prostate Cancer Risk Prediction Model Combining the Stockholm3 Test and Magnetic Resonance Imaging. European Urology Oncology, 2019, 2, 490-496.	2.6	13
100	Identification and Validation of Leucine-rich α-2-glycoprotein 1 as a Noninvasive Biomarker for Improved Precision in Prostate Cancer Risk Stratification. European Urology Open Science, 2020, 21, 51-60.	0.2	13
101	Prostate-specific antigen velocity in a prospective prostate cancer screening study of men with genetic predisposition. British Journal of Cancer, 2018, 118, 266-276.	2.9	12
102	Predictors of participation in risk-based prostate cancer screening. PLoS ONE, 2018, 13, e0200409.	1.1	12
103	Challenging conventional karyotyping by next-generation karyotyping in 281 intensively treated patients with AML. Blood Advances, 2021, 5, 1003-1016.	2.5	12
104	SNP interaction pattern identifier (SIPI): an intensive search for SNP–SNP interaction patterns. Bioinformatics, 2017, 33, 822-833.	1.8	11
105	Does a novel diagnostic pathway including blood-based risk prediction and MRI-targeted biopsies outperform prostate cancer screening using prostate-specific antigen and systematic prostate biopsies? - protocol of the randomised study STHLM3MRI. BMJ Open, 2019, 9, e027816.	0.8	11
106	Lower urinary tract symptoms (LUTS) are not associated with an increased risk of prostate cancer in men 50–69 years with PSA ≥3 ng/ml. Scandinavian Journal of Urology, 2020, 54, 1-6.	0.6	11
107	A natural history model for planning prostate cancer testing: Calibration and validation using Swedish registry data. PLoS ONE, 2019, 14, e0211918.	1.1	10
108	Predictors of adverse pathology on radical prostatectomy specimen in men initially enrolled in active surveillance for low-risk prostate cancer. World Journal of Urology, 2021, 39, 1797-1804.	1.2	10

#	Article	IF	CITATIONS
109	Balancing Overdiagnosis and Early Detection of Prostate Cancer using the Stockholm-3 Model. European Urology Focus, 2018, 4, 385-387.	1.6	9
110	Somatic alterations detected in diagnostic prostate biopsies provide an inadequate representation of multifocal prostate cancer. Prostate, 2019, 79, 920-928.	1.2	9
111	Prognostic value of perineural invasion in prostate needle biopsies: a population-based study of patients treated by radical prostatectomy. Journal of Clinical Pathology, 2020, 73, 630-635.	1.0	9
112	Incorporating Magnetic Resonance Imaging and Biomarkers in Active Surveillance Protocols - Results From the Prospective Stockholm3 Active Surveillance Trial (STHLM3AS). Journal of the National Cancer Institute, 2021, 113, 632-640.	3.0	9
113	Transcriptome-wide prediction of prostate cancer gene expression from histopathology images using co-expression-based convolutional neural networks. Bioinformatics, 2022, 38, 3462-3469.	1.8	9
114	The STHLM3 prostate cancer diagnostic study: calibration, clarification, and comments. Nature Reviews Clinical Oncology, 2016, 13, 394-394.	12.5	7
115	Height, selected genetic markers and prostate cancer risk: results from the PRACTICAL consortium. British Journal of Cancer, 2017, 117, 734-743.	2.9	7
116	Has the PROPHECY of AR-V7 Been Fulfilled?. Journal of Clinical Oncology, 2019, 37, 2181-2182.	0.8	7
117	Are Prostate Specific-Antigen (PSA) and age associated with the risk of ISUP Grade 1 prostate cancer? Results from 72 996 individual biopsy cores in 6 083 men from the Stockholm3 study. PLoS ONE, 2019, 14, e0218280.	1.1	7
118	Clinical Trial Protocol for ProBio: An Outcome-adaptive and Randomised Multiarm Biomarker-driven Study in Patients with Metastatic Prostate Cancer. European Urology Focus, 2022, 8, 1617-1621.	1.6	7
119	Integrated transcriptomic and genomic analysis improves prediction of complete remission and survival in elderly patients with acute myeloid leukemia. Blood Cancer Journal, 2020, 10, 67.	2.8	6
120	Polymorphisms In The Nitric-Oxide Synthase 2 Gene And Prostate Cancer Pathogenesis. Redox Biology, 2015, 5, 419.	3.9	5
121	Ethnic variation in prostate cancer detection: a feasibility study for use of the Stockholm3 test in a multiethnic U.S. cohort. Prostate Cancer and Prostatic Diseases, 2021, 24, 120-127.	2.0	5
122	KLK3 SNP–SNP interactions for prediction of prostate cancer aggressiveness. Scientific Reports, 2021, 11, 9264.	1.6	5
123	E-Science technologies in a workflow for personalized medicine using cancer screening as a case study. Journal of the American Medical Informatics Association: JAMIA, 2017, 24, 950-957.	2.2	4
124	Poor Follow-up After Elevated Prostate-specific Antigen Tests: A Population-based Cohort Study. European Urology Focus, 2019, 5, 842-848.	1.6	4
125	Cost-Effectiveness of the Stockholm3 Test and Magnetic Resonance Imaging in Prostate Cancer Screening: A Microsimulation Study. European Urology, 2022, 82, 12-19.	0.9	4
126	Effects of increasing the PSA cutoff to perform additional biomarker tests before prostate biopsy. BMC Urology, 2017, 17, 92.	0.6	3

8

#	Article	IF	CITATIONS
127	AA9int: SNP interaction pattern search using non-hierarchical additive model set. Bioinformatics, 2018, 34, 4141-4150.	1.8	3
128	Study design requirements for RNA sequencing-based breast cancer diagnostics. Scientific Reports, 2016, 6, 20200.	1.6	2
129	Re: Tobias Nordström, Andrew Vickers, Melissa Assel, Hans Lilja, Henrik Grönberg, Martin Eklund. Comparison Between the Four-kallikrein Panel and Prostate Health Index for Predicting Prostate Cancer. Eur Urol 2015;68:139–46. European Urology, 2018, 74, e35-e36.	0.9	2
130	A Nordic initiative for a more personal and accurate diagnostic pathway for prostate cancer. Scandinavian Journal of Primary Health Care, 2020, 38, 249-250.	0.6	2
131	The STHLM3-model, Risk-based Prostate Cancer Testing Identifies Men at High Risk Without Inducing Negative Psychosocial Effects. European Urology Open Science, 2021, 24, 43-51.	0.2	2
132	Identifying Prostate Cancer Among Men with Lower Urinary Tract Symptoms. European Urology Open Science, 2021, 24, 11-16.	0.2	2
133	A Head-to-head Comparison of Prostate Cancer Diagnostic Strategies Using the Stockholm3 Test, Magnetic Resonance Imaging, and Swedish National Guidelines: Results from a Prospective Population-based Screening Study. European Urology Open Science, 2022, 38, 32-39.	0.2	2
134	Biomarker discrimination and calibration with MRI-targeted biopsies: an analysis with the Stockholm3 test. Prostate Cancer and Prostatic Diseases, 2021, 24, 457-464.	2.0	1
135	Increased Pathway Complexity Is a Prognostic Biomarker in Metastatic Castration-Resistant Prostate Cancer. Cancers, 2021, 13, 1588.	1.7	1
136	Future directions in prostate cancer testing: a comment upon results from the prospective population-based diagnostic STHLM3 study—Grönberg H et al. Lancet Oncology. 2015 Nov 9; doi:10.1016/S1470-2045(15)00361-7. World Journal of Urology, 2017, 35, 895-896.	1.2	0
137	Reply to Ola Bratt and Anna Öfverholm's Letter to the Editor re: Peter Ström, Tobias Nordström, Henrik Grönberg, Martin Eklund. The Stockholm-3 Model for Prostate Cancer Detection: Algorithm Update, Biomarker Contribution, and Reflex Test Potential. Eur Urol. In press. https://doi.org/10.1016/j.eururo.2017.12.028. European Urology, 2018, 74, e10-e11.	0.9	0
138	Reply to Erik Rud, Peter Lauritzen, and Eduard Baco's Letter to the Editor re: Henrik Grönberg, Martin Eklund, Wolfgang Picker, et al. Prostate Cancer Diagnostics Using a Combination of the Stockholm3 Blood Test and Multiparametric Magnetic Resonance Imaging. Eur Urol 2018;74:722–8. European Urology, 2019, 75, e104-e105.	0.9	0
139	Response to Walsh. Journal of the National Cancer Institute, 2019, 111, 748-748.	3.0	Ο
140	The risk-based STHLM3 model to improve prostate cancer testing in men 50-69 years: Further health, economic, and clinic evaluation Journal of Clinical Oncology, 2016, 34, 36-36.	0.8	0
141	Association of changing prostate-specific antigen (PSA) levels on repeat testing with lower risk for Gleason Score (GS) ≥ 7 prostate cancer Journal of Clinical Oncology, 2016, 34, 284-284.	0.8	0
142	Prevalence and heterogeneity of androgen receptor splice variants and intra-AR structural variation in patient with castration-resistant prostate cancer Journal of Clinical Oncology, 2017, 35, 11530-11530.	0.8	0