
Max Crispin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2908510/publications.pdf Version: 2024-02-01

MAY CDISDIN

#	Article	IF	CITATIONS
1	Glycosylation and Serological Reactivity of an Expression-enhanced SARS-CoV-2 Viral Spike Mimetic. Journal of Molecular Biology, 2022, 434, 167332.	4.2	22
2	The Glycan Hole Area of HIV-1 Envelope Trimers Contributes Prominently to the Induction of Autologous Neutralization. Journal of Virology, 2022, 96, JVI0155221.	3.4	13
3	Nucleic acid delivery of immune-focused SARS-CoV-2 nanoparticles drives rapid and potent immunogenicity capable of single-dose protection. Cell Reports, 2022, 38, 110318.	6.4	17
4	High thermostability improves neutralizing antibody responses induced by native-like HIV-1 envelope trimers. Npj Vaccines, 2022, 7, 27.	6.0	13
5	Prognostic significance of crown-like structures to trastuzumab response in patients with primary invasive HER2 + breast carcinoma. Scientific Reports, 2022, 12, .	3.3	7
6	Principles of SARS-CoV-2 glycosylation. Current Opinion in Structural Biology, 2022, 75, 102402.	5.7	27
7	Uncovering cryptic pockets in the SARS-CoV-2 spike glycoprotein. Structure, 2022, 30, 1062-1074.e4.	3.3	21
8	Preferential uptake of SARS-CoV-2 by pericytes potentiates vascular damage and permeability in an organoid model of the microvasculature. Cardiovascular Research, 2022, 118, 3085-3096.	3.8	17
9	A novel ACE2 isoform is expressed in human respiratory epithelia and is upregulated in response to interferons and RNA respiratory virus infection. Nature Genetics, 2021, 53, 205-214.	21.4	125
10	Immunofocusing and enhancing autologous Tier-2 HIV-1 neutralization by displaying Env trimers on two-component protein nanoparticles. Npj Vaccines, 2021, 6, 24.	6.0	33
11	Subtle Influence of ACE2 Glycan Processing on SARS-CoV-2 Recognition. Journal of Molecular Biology, 2021, 433, 166762.	4.2	64
12	A cross-neutralizing antibody between HIV-1 and influenza virus. PLoS Pathogens, 2021, 17, e1009407.	4.7	23
13	Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection. Cell, 2021, 184, 1188-1200.e19.	28.9	154
14	Effector function does not contribute to protection from virus challenge by a highly potent HIV broadly neutralizing antibody in nonhuman primates. Science Translational Medicine, 2021, 13, .	12.4	23
15	Native-like SARS-CoV-2 Spike Glycoprotein Expressed by ChAdOx1 nCoV-19/AZD1222 Vaccine. ACS Central Science, 2021, 7, 594-602.	11.3	118
16	SARSâ€CoVâ€2â€specific IgG1/IgG3 but not IgM in children with Pediatric Inflammatory Multiâ€5ystem Syndrome. Pediatric Allergy and Immunology, 2021, 32, 1125-1129.	2.6	13
17	Enhancing glycan occupancy of soluble HIV-1 envelope trimers to mimic the native viral spike. Cell Reports, 2021, 35, 108933.	6.4	37
18	Clinical significance of crown-like structures to trastuzumab response in patients with primary invasive HER2+ breast cancer Journal of Clinical Oncology, 2021, 39, e12533-e12533.	1.6	0

#	Article	IF	CITATIONS
19	Development of a highâ€sensitivity ELISA detecting IgG, IgA and IgM antibodies to the SARS oVâ€2 spike glycoprotein in serum and saliva. Immunology, 2021, 164, 135-147.	4.4	35
20	TNF receptor agonists induce distinct receptor clusters to mediate differential agonistic activity. Communications Biology, 2021, 4, 772.	4.4	23
21	Neutralizing Antibodies Induced by First-Generation gp41-Stabilized HIV-1 Envelope Trimers and Nanoparticles. MBio, 2021, 12, e0042921.	4.1	6
22	Site-Specific Steric Control of SARS-CoV-2 Spike Glycosylation. Biochemistry, 2021, 60, 2153-2169.	2.5	54
23	Validation of a combined ELISA to detect IgC, IgA and IgM antibody responses to SARS-CoV-2 in mild or moderate non-hospitalised patients. Journal of Immunological Methods, 2021, 494, 113046.	1.4	40
24	ldentification of N-glycans with GalNAc-containing antennae from recombinant HIV trimers by ion mobility and negative ion fragmentation. Analytical and Bioanalytical Chemistry, 2021, 413, 7229-7240.	3.7	1
25	Site-Specific Glycosylation of Recombinant Viral Glycoproteins Produced in Nicotiana benthamiana. Frontiers in Plant Science, 2021, 12, 709344.	3.6	9
26	Insertion of atypical glycans into the tumor antigen-binding site identifies DLBCLs with distinct origin and behavior. Blood, 2021, 138, 1570-1582.	1.4	9
27	Formation and fragmentation of doubly and triply charged ions in the negative ion spectra of neutral N-glycans from viral and other glycoproteins. Analytical and Bioanalytical Chemistry, 2021, 413, 7277-7294.	3.7	0
28	Polyclonal antibody responses to HIV Env immunogens resolved using cryoEM. Nature Communications, 2021, 12, 4817.	12.8	35
29	Serological responses to SARS-CoV-2 following non-hospitalised infection: clinical and ethnodemographic features associated with the magnitude of the antibody response. BMJ Open Respiratory Research, 2021, 8, e000872.	3.0	25
30	Suppression of O-Linked Glycosylation of the SARS-CoV-2 Spike by Quaternary Structural Restraints. Analytical Chemistry, 2021, 93, 14392-14400.	6.5	12
31	Engineering well-expressed, V2-immunofocusing HIV-1 envelope glycoprotein membrane trimers for use in heterologous prime-boost vaccine regimens. PLoS Pathogens, 2021, 17, e1009807.	4.7	13
32	Neutralizing Antibody Responses Induced by HIV-1 Envelope Glycoprotein SOSIP Trimers Derived from Elite Neutralizers. Journal of Virology, 2020, 94, .	3.4	11
33	Sensitive Detection of SARS-CoV-2–Specific Antibodies in Dried Blood Spot Samples. Emerging Infectious Diseases, 2020, 26, 2970-2973.	4.3	74
34	Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens. PLoS Pathogens, 2020, 16, e1008665.	4.7	52
35	Molecular Architecture of the SARS-CoV-2 Virus. Cell, 2020, 183, 730-738.e13.	28.9	793
36	SARS-CoV-2 seroprevalence and asymptomatic viral carriage in healthcare workers: a cross-sectional study. Thorax, 2020, 75, 1089-1094.	5.6	234

#	Article	IF	CITATIONS
37	A Roadmap for the Molecular Farming of Viral Glycoprotein Vaccines: Engineering Glycosylation and Glycosylation-Directed Folding. Frontiers in Plant Science, 2020, 11, 609207.	3.6	18
38	Site-specific glycan analysis of the SARS-CoV-2 spike. Science, 2020, 369, 330-333.	12.6	1,277
39	Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. Nature Communications, 2020, 11, 2688.	12.8	304
40	Networks of HIV-1 Envelope Glycans Maintain Antibody Epitopes in the Face of Glycan Additions and Deletions. Structure, 2020, 28, 897-909.e6.	3.3	46
41	Title is missing!. , 2020, 16, e1008665.		0
42	Title is missing!. , 2020, 16, e1008665.		0
43	Title is missing!. , 2020, 16, e1008665.		0
44	Title is missing!. , 2020, 16, e1008665.		0
45	Similarities and differences between native HIV-1 envelope glycoprotein trimers and stabilized soluble trimer mimetics. PLoS Pathogens, 2019, 15, e1007920.	4.7	61
46	Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle. Nature Communications, 2019, 10, 4272.	12.8	149
47	Exploitation of glycosylation in enveloped virus pathobiology. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1480-1497.	2.4	383
48	Structure and immunogenicity of a stabilized HIV-1 envelope trimer based on a group-M consensus sequence. Nature Communications, 2019, 10, 2355.	12.8	116
49	The Chimpanzee SIV Envelope Trimer: Structure and Deployment as an HIV Vaccine Template. Cell Reports, 2019, 27, 2426-2441.e6.	6.4	35
50	Protein and Glycan Mimicry in HIV Vaccine Design. Journal of Molecular Biology, 2019, 431, 2223-2247.	4.2	91
51	Structural Insights into Entry and Antibody Neutralization of Eastern Equine Encephalitis Virus. Biophysical Journal, 2019, 116, 576a.	0.5	0
52	Vaccination with Glycan-Modified HIV NFL Envelope Trimer-Liposomes Elicits Broadly Neutralizing Antibodies to Multiple Sites of Vulnerability. Immunity, 2019, 51, 915-929.e7.	14.3	111
53	Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers. Science, 2019, 363, 649-654.	12.6	227
54	Closing and Opening Holes in the Glycan Shield of HIV-1 Envelope Glycoprotein SOSIP Trimers Can Redirect the Neutralizing Antibody Response to the Newly Unmasked Epitopes. Journal of Virology, 2019, 93, .	3.4	66

#	Article	IF	CITATIONS
55	Mannosylation of the Tumor Immunoglobulin Variable Region Informs Cell of Origin and Environmental Interactions in DLBCL Subsets. Blood, 2019, 134, 1505-1505.	1.4	1
56	lsomer Information from Ion Mobility Separation of High-Mannose Glycan Fragments. Journal of the American Society for Mass Spectrometry, 2018, 29, 972-988.	2.8	21
57	Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans. Journal of the American Society for Mass Spectrometry, 2018, 29, 1250-1261.	2.8	26
58	Glycosylation of Human IgA Directly Inhibits Influenza A and Other Sialic-Acid-Binding Viruses. Cell Reports, 2018, 23, 90-99.	6.4	80
59	Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages. Journal of Proteome Research, 2018, 17, 987-999.	3.7	23
60	Quantitative mass imaging of single biological macromolecules. Science, 2018, 360, 423-427.	12.6	453
61	Structure and Immune Recognition of the HIV Glycan Shield. Annual Review of Biophysics, 2018, 47, 499-523.	10.0	115
62	cGMP production and analysis of BG505 SOSIP.664, an extensively glycosylated, trimeric HIVâ€1 envelope glycoprotein vaccine candidate. Biotechnology and Bioengineering, 2018, 115, 885-899.	3.3	75
63	HIV-1 vaccine design through minimizing envelope metastability. Science Advances, 2018, 4, eaau6769.	10.3	75
64	Cryo-EM Structures of Eastern Equine Encephalitis Virus Reveal Mechanisms of Virus Disassembly and Antibody Neutralization. Cell Reports, 2018, 25, 3136-3147.e5.	6.4	49
65	Rational Design of DNA-Expressed Stabilized Native-Like HIV-1 Envelope Trimers. Cell Reports, 2018, 24, 3324-3338.e5.	6.4	49
66	Through the barricades: overcoming the barriers to effective antibody-based cancer therapeutics. Glycobiology, 2018, 28, 697-712.	2.5	8
67	Structure of a cleavage-independent HIV Env recapitulates the glycoprotein architecture of the native cleaved trimer. Nature Communications, 2018, 9, 1956.	12.8	50
68	Harnessing post-translational modifications for next-generation HIV immunogens. Biochemical Society Transactions, 2018, 46, 691-698.	3.4	5
69	Signature of Antibody Domain Exchange by Native Mass Spectrometry and Collision-Induced Unfolding. Analytical Chemistry, 2018, 90, 7325-7331.	6.5	31
70	Structure of the Lassa virus glycan shield provides a model for immunological resistance. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7320-7325.	7.1	95
71	Structure-Guided Redesign Improves NFL HIV Env Trimer Integrity and Identifies an Inter-Protomer Disulfide Permitting Post-Expression Cleavage. Frontiers in Immunology, 2018, 9, 1631.	4.8	37
72	Cleavage-Independent HIV-1 Trimers From CHO Cell Lines Elicit Robust Autologous Tier 2 Neutralizing Antibodies. Frontiers in Immunology, 2018, 9, 1116.	4.8	27

#	Article	IF	CITATIONS
73	Structural analysis of glycoproteins: building N-linked glycans with <i>Coot</i> . Acta Crystallographica Section D: Structural Biology, 2018, 74, 256-263.	2.3	97
74	Site-Specific Glycosylation of Virion-Derived HIV-1 Env Is Mimicked by a Soluble Trimeric Immunogen. Cell Reports, 2018, 24, 1958-1966.e5.	6.4	120
75	Identification of Lewis and Blood Group Carbohydrate Epitopes by Ion Mobility-Tandem-Mass Spectrometry Fingerprinting. Analytical Chemistry, 2017, 89, 2318-2325.	6.5	57
76	The Tetrameric Plant Lectin BanLec Neutralizes HIV through Bidentate Binding to Specific Viral Glycans. Structure, 2017, 25, 773-782.e5.	3.3	39
77	Improving Antibody-Based Cancer Therapeutics Through Glycan Engineering. BioDrugs, 2017, 31, 151-166.	4.6	58
78	Enzymatic Inactivation of Endogenous IgG by IdeS Enhances Therapeutic Antibody Efficacy. Molecular Cancer Therapeutics, 2017, 16, 1887-1897.	4.1	11
79	Reducing V3 Antigenicity and Immunogenicity on Soluble, Native-Like HIV-1 Env SOSIP Trimers. Journal of Virology, 2017, 91, .	3.4	57
80	Structural principles controlling HIV envelope glycosylation. Current Opinion in Structural Biology, 2017, 44, 125-133.	5.7	99
81	Global N-Glycan Site Occupancy of HIV-1 gp120 by Metabolic Engineering and High-Resolution Intact Mass Spectrometry. ACS Chemical Biology, 2017, 12, 357-361.	3.4	34
82	Elicitation of Neutralizing Antibodies Targeting the V2 Apex of the HIV Envelope Trimer in a Wild-Type Animal Model. Cell Reports, 2017, 21, 222-235.	6.4	58
83	Improving the Immunogenicity of Native-like HIV-1 Envelope Trimers by Hyperstabilization. Cell Reports, 2017, 20, 1805-1817.	6.4	171
84	Design and crystal structure of a native-like HIV-1 envelope trimer that engages multiple broadly neutralizing antibody precursors in vivo. Journal of Experimental Medicine, 2017, 214, 2573-2590.	8.5	151
85	Glycosylation profiling to evaluate glycoprotein immunogens against HIV-1. Expert Review of Proteomics, 2017, 14, 881-890.	3.0	24
86	Manipulation of cytokine secretion in human dendritic cells using glycopolymers with picomolar affinity for DC-SIGN. Chemical Science, 2017, 8, 6974-6980.	7.4	31
87	Immunoglobulin G Fc glycans are not essential for antibody-mediated immune suppression to murine erythrocytes. Blood, 2017, 130, 2902-2905.	1.4	2
88	Convergent immunological solutions to Argentine hemorrhagic fever virus neutralization. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7031-7036.	7.1	31
89	An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability. Nature Microbiology, 2017, 2, 16199.	13.3	144
90	Molecular Architecture of the Cleavage-Dependent Mannose Patch on a Soluble HIV-1 Envelope Glycoprotein Trimer. Journal of Virology, 2017, 91, .	3.4	77

#	Article	IF	CITATIONS
91	Targeting Glycans of HIV Envelope Glycoproteins for Vaccine Design. Chemical Biology, 2017, , 300-357.	0.2	4
92	Travellingâ€wave ion mobility and negative ion fragmentation of highâ€mannose <i>N</i> â€glycans. Journal of Mass Spectrometry, 2016, 51, 219-235.	1.6	34
93	HIV-1 Glycan Density Drives the Persistence of the Mannose Patch within an Infected Individual. Journal of Virology, 2016, 90, 11132-11144.	3.4	43
94	Immune recruitment or suppression by glycan engineering of endogenous and therapeutic antibodies. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1655-1668.	2.4	47
95	Trimeric HIV-1-Env Structures Define Clycan Shields from Clades A, B, and G. Cell, 2016, 165, 813-826.	28.9	379
96	Antibody production using a ciliate generates unusual antibody glycoforms displaying enhanced cell-killing activity. MAbs, 2016, 8, 1498-1511.	5.2	14
97	Travellingâ€wave ion mobility mass spectrometry and negative ion fragmentation of hybrid and complex <i>N</i> â€glycans. Journal of Mass Spectrometry, 2016, 51, 1064-1079.	1.6	28
98	Structure of a phleboviral envelope glycoprotein reveals a consolidated model of membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7154-7159.	7.1	87
99	Native functionality and therapeutic targeting of arenaviral glycoproteins. Current Opinion in Virology, 2016, 18, 70-75.	5.4	15
100	Mechanisms of escape from the PGT128 family of anti-HIV broadly neutralizing antibodies. Retrovirology, 2016, 13, 8.	2.0	40
101	Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein. Cell Reports, 2016, 14, 2695-2706.	6.4	250
102	A monoclonal antibody with antiâ€D–like activity in murine immune thrombocytopenia requires Fc domain function for immune thrombocytopenia ameliorative effects. Transfusion, 2015, 55, 1501-1511.	1.6	11
103	Engineering and Characterization of a Fluorescent Native-Like HIV-1 Envelope Glycoprotein Trimer. Biomolecules, 2015, 5, 2919-2934.	4.0	12
104	Targeting host-derived glycans on enveloped viruses for antibody-based vaccine design. Current Opinion in Virology, 2015, 11, 63-69.	5.4	73
105	Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-neutralizing Epitopes. Cell, 2015, 163, 1702-1715.	28.9	341
106	Structural Constraints Determine the Glycosylation of HIV-1 Envelope Trimers. Cell Reports, 2015, 11, 1604-1613.	6.4	135
107	A method for high-throughput, sensitive analysis of IgG Fc and Fab glycosylation by capillary electrophoresis. Journal of Immunological Methods, 2015, 417, 34-44.	1.4	95
108	Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies. Nature Communications, 2015, 6, 7479.	12.8	113

#	Article	IF	CITATIONS
109	Glycan Microheterogeneity at the PGT135 Antibody Recognition Site on HIV-1 gp120 Reveals a Molecular Mechanism for Neutralization Resistance. Journal of Virology, 2015, 89, 6952-6959.	3.4	35
110	Eliminating antibody polyreactivity through addition of <i>N</i> â€linked glycosylation. Protein Science, 2015, 24, 1019-1030.	7.6	11
111	Breaking the allergic response by disrupting antibody glycosylation. Journal of Experimental Medicine, 2015, 212, 433-433.	8.5	2
112	Ion Mobility Mass Spectrometry for Ion Recovery and Clean-Up of MS and MS/MS Spectra Obtained from Low Abundance Viral Samples. Journal of the American Society for Mass Spectrometry, 2015, 26, 1754-1767.	2.8	28
113	Redirecting adenoviruses to tumour cells using therapeutic antibodies: Generation of a versatile human bispecific adaptor. Molecular Immunology, 2015, 68, 234-243.	2.2	4
114	Cell- and Protein-Directed Glycosylation of Native Cleaved HIV-1 Envelope. Journal of Virology, 2015, 89, 8932-8944.	3.4	88
115	Determination of N-linked Glycosylation in Viral Glycoproteins by Negative Ion Mass Spectrometry and Ion Mobility. Methods in Molecular Biology, 2015, 1331, 93-121.	0.9	11
116	Influences on the Design and Purification of Soluble, Recombinant Native-Like HIV-1 Envelope Glycoprotein Trimers. Journal of Virology, 2015, 89, 12189-12210.	3.4	88
117	Glycan Remodeling with Processing Inhibitors and Lectin-Resistant Eukaryotic Cells. Methods in Molecular Biology, 2015, 1321, 307-322.	0.9	5
118	Uukuniemi Phlebovirus Assembly and Secretion Leave a Functional Imprint on the Virion Glycome. Journal of Virology, 2014, 88, 10244-10251.	3.4	22
119	Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function. Aids, 2014, 28, 2523-2530.	2.2	108
120	Fragments of Bacterial Endoglycosidase S and Immunoglobulin G Reveal Subdomains of Each That Contribute to Deglycosylation. Journal of Biological Chemistry, 2014, 289, 13876-13889.	3.4	27
121	Antibody Glycosylation. , 2014, , 179-194.		2
122	Emerging Principles for the Therapeutic Exploitation of Glycosylation. Science, 2014, 343, 1235681.	12.6	381
123	Structural Plasticity of the Semliki Forest Virus Glycome upon Interspecies Transmission. Journal of Proteome Research, 2014, 13, 1702-1712.	3.7	26
124	Fragmentation of negative ions from N-linked carbohydrates: Part 6. Glycans containing oneN-acetylglucosamine in the core. Rapid Communications in Mass Spectrometry, 2014, 28, 2008-2018.	1.5	25
125	Travelling wave ion mobility and negative ion fragmentation for the structural determination of <i>N</i> â€linked glycans. Electrophoresis, 2013, 34, 2368-2378.	2.4	49
126	Antibodies expose multiple weaknesses in the glycan shield of HIV. Nature Structural and Molecular Biology, 2013, 20, 771-772.	8.2	16

#	Article	IF	CITATIONS
127	Dissecting the Molecular Mechanism of IVIg Therapy: The Interaction between Serum IgG and DC-SIGN is Independent of Antibody Glycoform or Fc Domain. Journal of Molecular Biology, 2013, 425, 1253-1258.	4.2	116
128	Engineering Hydrophobic Protein–Carbohydrate Interactions to Fine-Tune Monoclonal Antibodies. Journal of the American Chemical Society, 2013, 135, 9723-9732.	13.7	78
129	Solution NMR Analyses of the C-type Carbohydrate Recognition Domain of DC-SIGNR Protein Reveal Different Binding Modes for HIV-derived Oligosaccharides and Smaller Glycan Fragments. Journal of Biological Chemistry, 2013, 288, 22745-22757.	3.4	16
130	Crystal structure of sialylated IgG Fc: Implications for the mechanism of intravenous immunoglobulin therapy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3544-6.	7.1	84
131	Directing stem cell differentiation with antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17608-17609.	7.1	4
132	Therapeutic potential of deglycosylated antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10059-10060.	7.1	9
133	Natural variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity. Journal of Clinical Investigation, 2013, 123, 2183-2192.	8.2	310
134	MALDI-MS/MS with Traveling Wave Ion Mobility for the Structural Analysis of <i>N</i> -Linked Glycans. Journal of the American Society for Mass Spectrometry, 2012, 23, 1955-1966.	2.8	52
135	Chemical and Structural Analysis of an Antibody Folding Intermediate Trapped during Glycan Biosynthesis. Journal of the American Chemical Society, 2012, 134, 17554-17563.	13.7	65
136	Selective Deactivation of Serum IgC: A General Strategy for the Enhancement of Monoclonal Antibody Receptor Interactions. Journal of Molecular Biology, 2012, 420, 1-7.	4.2	53
137	An Endoglycosidase with Alternative Glycan Specificity Allows Broadened Glycoprotein Remodelling. Journal of the American Chemical Society, 2012, 134, 8030-8033.	13.7	122
138	The Glycan Shield of HIV Is Predominantly Oligomannose Independently of Production System or Viral Clade. PLoS ONE, 2011, 6, e23521.	2.5	201
139	A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield. Science, 2011, 334, 1097-1103.	12.6	644
140	Ion Mobility Mass Spectrometry for Extracting Spectra <i>of N</i> -Glycans Directly from Incubation Mixtures Following Glycan Release: Application to Glycans from Engineered Glycoforms of Intact, Folded HIV gp120. Journal of the American Society for Mass Spectrometry, 2011, 22, 568-581.	2.8	65
141	Use of the α-mannosidase I inhibitor kifunensine allows the crystallization of apo CTLA-4 homodimer produced in long-term cultures of Chinese hamster ovary cells. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 785-789.	0.7	17
142	Shared paramyxoviral glycoprotein architecture is adapted for diverse attachment strategies. Biochemical Society Transactions, 2010, 38, 1349-1355.	3.4	34
143	Dimeric Architecture of the Hendra Virus Attachment Glycoprotein: Evidence for a Conserved Mode of Assembly. Journal of Virology, 2010, 84, 6208-6217.	3.4	90
144	Envelope glycans of immunodeficiency virions are almost entirely oligomannose antigens. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13800-13805.	7.1	309

#	Article	IF	CITATIONS
145	Polysaccharide mimicry of the epitope of the broadly neutralizing anti-HIV antibody, 2G12, induces enhanced antibody responses to self oligomannose glycans. Glycobiology, 2010, 20, 812-823.	2.5	77
146	Solutions to the Glycosylation Problem for Low- and High-Throughput Structural Glycoproteomics. , 2010, , 127-158.		4
147	A Human Embryonic Kidney 293T Cell Line Mutated at the Golgi α-Mannosidase II Locus. Journal of Biological Chemistry, 2009, 284, 21684-21695.	3.4	35
148	Unusual Molecular Architecture of the Machupo Virus Attachment Glycoprotein. Journal of Virology, 2009, 83, 8259-8265.	3.4	71
149	Identification of high-mannose and multiantennary complex-type N-linked glycans containing α-galactose epitopes from Nurse shark IgM heavy chain. Glycoconjugate Journal, 2009, 26, 1055-1064.	2.7	11
150	Carbohydrate and Domain Architecture of an Immature Antibody Glycoform Exhibiting Enhanced Effector Functions. Journal of Molecular Biology, 2009, 387, 1061-1066.	4.2	67
151	Differentiation between isomeric triantennary <i>N</i> â€linked glycans by negative ion tandem mass spectrometry and confirmation of glycans containing galactose attached to the bisecting (<i>β</i> 1â€4â€GlcNAc) residue in <i>N</i> â€glycans from IgG. Rapid Communications in Mass Spectrometry, 2008, 22, 1047-1052.	1.5	48
152	Crystal Structure and Carbohydrate Analysis of Nipah Virus Attachment Glycoprotein: a Template for Antiviral and Vaccine Design. Journal of Virology, 2008, 82, 11628-11636.	3.4	109
153	Inhibition of Mammalian Glycan Biosynthesis Produces Non-self Antigens for a Broadly Neutralising, HIV-1 Specific Antibody. Journal of Molecular Biology, 2007, 372, 16-22.	4.2	68
154	Disruption of α-mannosidase processing induces non-canonical hybrid-type glycosylation. FEBS Letters, 2007, 581, 1963-1968.	2.8	18
155	Analysis of variable N-glycosylation site occupancy in glycoproteins by liquid chromatography electrospray ionization mass spectrometry. Analytical Biochemistry, 2007, 361, 149-151.	2.4	12
156	Building meaningful models of glycoproteins. Nature Structural and Molecular Biology, 2007, 14, 354-354.	8.2	48
157	Glycoprotein Structural Genomics: Solving the Glycosylation Problem. Structure, 2007, 15, 267-273.	3.3	273
158	Inhibition of hybrid- and complex-type glycosylation reveals the presence of the GlcNAc transferase I-independent fucosylation pathway. Glycobiology, 2006, 16, 748-756.	2.5	52
159	Molecular Mechanism of Lipopeptide Presentation by CD1a. Immunity, 2005, 22, 209-219.	14.3	122
160	The Glycosylation of Human Serum IgD and IgE and the Accessibility of Identified Oligomannose Structures for Interaction with Mannan-Binding Lectin. Journal of Immunology, 2004, 173, 6831-6840.	0.8	100
161	Monoglucosylated glycans in the secreted human complement component C3: implications for protein biosynthesis and structure. FEBS Letters, 2004, 566, 270-274.	2.8	47
162	The carbohydrate moiety of serum IgM from Atlantic cod (Gadus morhua L.). Fish and Shellfish Immunology, 2002, 12, 209-227.	3.6	19

#	Article	IF	CITATIONS
163	Contrasting IgG Structures Reveal Extreme Asymmetry and Flexibility. Journal of Molecular Biology, 2002, 319, 9-18.	4.2	246
164	Molecular Architecture of the SARS-CoV-2 Virus. SSRN Electronic Journal, 0, , .	0.4	2
165	SARS-CoV-2 Spike- and Nucleoprotein-Specific Antibodies Induced After Vaccination or Infection Promote Classical Complement Activation. Frontiers in Immunology, 0, 13, .	4.8	12
166	Augmenting glycosylationâ€directed folding pathways enhances the fidelity of HIV Env immunogen production in plants. Biotechnology and Bioengineering, 0, , .	3.3	5