Elena Garreta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2908375/publications.pdf Version: 2024-02-01

FLENA CADDETA

#	Article	IF	CITATIONS
1	Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell, 2020, 181, 905-913.e7.	28.9	1,827
2	Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 2008, 26, 1276-1284.	17.5	1,275
3	Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature, 2009, 460, 53-59.	27.8	660
4	Active superelasticity in three-dimensional epithelia of controlled shape. Nature, 2018, 563, 203-208.	27.8	223
5	Tissue engineering by decellularization and 3D bioprinting. Materials Today, 2017, 20, 166-178.	14.2	202
6	Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells. Nature Materials, 2019, 18, 397-405.	27.5	201
7	Complete Meiosis from Human Induced Pluripotent Stem Cells. Stem Cells, 2011, 29, 1186-1195.	3.2	177
8	Osteogenic Differentiation of Mouse Embryonic Stem Cells and Mouse Embryonic Fibroblasts in a Three-Dimensional Self-Assembling Peptide Scaffold. Tissue Engineering, 2006, 12, 2215-2227.	4.6	154
9	Rethinking organoid technology through bioengineering. Nature Materials, 2021, 20, 145-155.	27.5	150
10	Effects of freezing/thawing on the mechanical properties of decellularized lungs. Journal of Biomedical Materials Research - Part A, 2014, 102, 413-419.	4.0	85
11	Generation of Pig iPS Cells: A Model for Cell Therapy. Journal of Cardiovascular Translational Research, 2011, 4, 121-130.	2.4	84
12	Local micromechanical properties of decellularized lung scaffolds measured with atomic force microscopy. Acta Biomaterialia, 2013, 9, 6852-6859.	8.3	77
13	Simple Generation of Human Induced Pluripotent Stem Cells Using Poly-β-amino Esters As the Non-viral Gene Delivery System. Journal of Biological Chemistry, 2011, 286, 12417-12428.	3.4	68
14	Generation of Feeder-Free Pig Induced Pluripotent Stem Cells without Pou5f1. Cell Transplantation, 2012, 21, 815-825.	2.5	54
15	Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts. Biomaterials, 2016, 98, 64-78.	11.4	52
16	Effects of the Decellularization Method on the Local Stiffness of Acellular Lungs. Tissue Engineering - Part C: Methods, 2014, 20, 412-422.	2.1	51
17	Inhomogeneity of local stiffness in the extracellular matrix scaffold of fibrotic mouse lungs. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37, 186-195.	3.1	50
18	Fabrication of a three-dimensional nanostructured biomaterial for tissue engineering of bone. New Biotechnology, 2007, 24, 75-80.	2.7	42

Elena Garreta

#	Article	IF	CITATIONS
19	Fabrication of Bioactive Surfaces by Plasma Polymerization Techniques Using a Novel Acrylate-Derived Monomer. Plasma Processes and Polymers, 2005, 2, 605-611.	3.0	41
20	A diabetic milieu increases ACE2 expression and cellular susceptibility to SARS-CoV-2 infections in human kidney organoids and patient cells. Cell Metabolism, 2022, 34, 857-873.e9.	16.2	40
21	Bioelectronic Recordings of Cardiomyocytes with Accumulation Mode Electrolyte Gated Organic Field Effect Transistors. Biosensors and Bioelectronics, 2020, 150, 111844.	10.1	36
22	Regenerative strategies for kidney engineering. FEBS Journal, 2016, 283, 3303-3324.	4.7	34
23	Roadblocks in the Path of iPSC to the Clinic. Current Transplantation Reports, 2018, 5, 14-18.	2.0	30
24	Low oxygen tension enhances the generation of lung progenitor cells from mouse embryonic and induced pluripotent stem cells. Physiological Reports, 2014, 2, e12075.	1.7	25
25	Modeling epigenetic modifications in renal development and disease with organoids and genome editing. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	17
26	Evidence in favor of the essentiality of human cell membrane-bound ACE2 and against soluble ACE2 for SARS-CoV-2 infectivity. Cell, 2022, 185, 1837-1839.	28.9	17
27	A bioreactor for subjecting cultured cells to fast-rate intermittent hypoxia. Respiratory Physiology and Neurobiology, 2012, 182, 47-52.	1.6	16
28	Studying Kidney Disease Using Tissue and Genome Engineering in Human Pluripotent Stem Cells. Nephron, 2018, 138, 48-59.	1.8	10
29	Plasma Polymerization on Hydroxyapatite Powders to Increase Water Dispersability for Biomedical Applications. Plasma Processes and Polymers, 2006, 3, 553-561.	3.0	8
30	Kidney organoids for disease modeling. Oncotarget, 2018, 9, 12552-12553.	1.8	6
31	Non-coding microRNAs for cardiac regeneration: Exploring novel alternatives to induce heart healing. Non-coding RNA Research, 2017, 2, 93-99.	4.6	5
32	"Human iPSC-derived kidney organoids towards clinical implementations― Current Opinion in Biomedical Engineering, 2021, 20, 100346.	3.4	4
33	Directed Differentiation of Human Pluripotent Stem Cells for the Generation of High-Order Kidney Organoids. Methods in Molecular Biology, 2021, 2258, 171-192.	0.9	2
34	Genome editing in human pluripotent stem cells: a systematic approach unrevealing pancreas development and disease. Stem Cell Investigation, 2016, 3, 76-76.	3.0	1
35	Dissecting nephron morphogenesis using kidney organoids from human pluripotent stem cells. Current Opinion in Genetics and Development, 2022, 72, 22-29.	3.3	1

Research on Skeletal Muscle Diseases Using Pluripotent Stem Cells. , 0, , .

0

#	Article	IF	CITATIONS
37	Pluripotent Stem Cells and Skeletal Muscle Differentiation: Challenges and Immediate Applications. , 2017, , 1-35.		0