Jan Henning Klusmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2907464/publications.pdf

Version: 2024-02-01

105 papers

4,644 citations

33 h-index 106344 65 g-index

129 all docs

129 docs citations

times ranked

129

9307 citing authors

#	Article	IF	CITATIONS
1	lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/ \hat{l}^2 -catenin signaling. Nature Medicine, 2017, 23, 1331-1341.	30.7	352
2	Childhood obesity: increased risk for cardiometabolic disease and cancer in adulthood. Metabolism: Clinical and Experimental, 2019, 92, 147-152.	3.4	303
3	Developmental stage–selective effect of somatically mutated leukemogenic transcription factor GATA1. Nature Genetics, 2005, 37, 613-619.	21.4	262
4	Next-generation personalised medicine for high-risk paediatric cancer patients – The INFORM pilot study. European Journal of Cancer, 2016, 65, 91-101.	2.8	262
5	Treatment and prognostic impact of transient leukemia in neonates with Down syndrome. Blood, 2008, 111, 2991-2998.	1.4	228
6	Refined sgRNA efficacy prediction improves large- and small-scale CRISPR–Cas9 applications. Nucleic Acids Research, 2018, 46, 1375-1385.	14.5	213
7	miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. Genes and Development, 2010, 24, 478-490.	5.9	202
8	Successes and challenges in the treatment of pediatric acute myeloid leukemia: a retrospective analysis of the AML-BFM trials from 1987 to 2012. Leukemia, 2018, 32, 2167-2177.	7.2	155
9	<i>miR-99a/100â^1/4125b</i> tricistrons regulate hematopoietic stem and progenitor cell homeostasis by shifting the balance between TGFβ and Wnt signaling. Genes and Development, 2014, 28, 858-874.	5.9	136
10	LincRNAs MONC and MIR100HG act as oncogenes in acute megakaryoblastic leukemia. Molecular Cancer, 2014, 13, 171.	19.2	131
11	The non-coding RNA landscape of human hematopoiesis and leukemia. Nature Communications, 2017, 8, 218.	12.8	131
12	Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis. Genes and Development, 2010, 24, 1659-1672.	5.9	122
13	Nextâ€generation sequencing for minimal residual disease monitoring in acute myeloid leukemia patients with <i>FLT3</i> à€ITD or <i>NPM1</i> mutations. Genes Chromosomes and Cancer, 2012, 51, 689-695.	2.8	114
14	Histone deacetylase inhibitors induce apoptosis in myeloid leukemia by suppressing autophagy. Leukemia, 2014, 28, 577-588.	7.2	112
15	The Pediatric Precision Oncology INFORM Registry: Clinical Outcome and Benefit for Patients with Very High-Evidence Targets. Cancer Discovery, 2021, 11, 2764-2779.	9.4	110
16	Mechanisms of Progression of Myeloid Preleukemia to Transformed Myeloid Leukemia in Children with Down Syndrome. Cancer Cell, 2019, 36, 123-138.e10.	16.8	93
17	Analysis of GATA1 mutations in Down syndrome transient myeloproliferative disorder and myeloid leukemia. Blood, 2011, 118, 2222-2238.	1.4	92
18	The role of sirtuin 2 activation by nicotinamide phosphoribosyltransferase in the aberrant proliferation and survival of myeloid leukemia cells. Haematologica, 2012, 97, 551-559.	3.5	87

#	Article	IF	Citations
19	The role of matched sibling donor allogeneic stem cell transplantation in pediatric high-risk acute myeloid leukemia: results from the AML-BFM 98 study. Haematologica, 2012, 97, 21-29.	3.5	78
20	Lost in translation: pluripotent stem cellâ€derived hematopoiesis. EMBO Molecular Medicine, 2015, 7, 1388-1402.	6.9	76
21	Prevalence and prognostic value of IDH1 and IDH2 mutations in childhood AML: a study of the AML–BFM and DCOG study groups. Leukemia, 2011, 25, 1704-1710.	7.2	73
22	miR-9 is a tumor suppressor in pediatric AML with t(8;21). Leukemia, 2014, 28, 1022-1032.	7.2	72
23	Endogenous Tumor Suppressor microRNA-193b: Therapeutic and Prognostic Value in Acute Myeloid Leukemia. Journal of Clinical Oncology, 2018, 36, 1007-1016.	1.6	67
24	Therapy reduction in patients with Down syndrome and myeloid leukemia: the international ML-DS 2006 trial. Blood, 2017, 129, 3314-3321.	1.4	64
25	Granulocyte Colony-Stimulating Factor (G-CSF) Treatment of Childhood Acute Myeloid Leukemias That Overexpress the Differentiation-Defective <i>G-CSF</i> Receptor Isoform IV Is Associated With a Higher Incidence of Relapse. Journal of Clinical Oncology, 2010, 28, 2591-2597.	1.6	62
26	CRISPR-Cas9-induced t(11;19)/MLL-ENL translocations initiate leukemia in human hematopoietic progenitor cells <i>in vivo</i> . Haematologica, 2017, 102, 1558-1566.	3.5	60
27	Improved outcome of pediatric patients with acute megakaryoblastic leukemia in the AML-BFM 04 trial. Annals of Hematology, 2015, 94, 1327-1336.	1.8	54
28	miR-139-5p controls translation in myeloid leukemia through EIF4G2. Oncogene, 2016, 35, 1822-1831.	5.9	51
29	MicroRNA-125b-5p mimic inhibits acute liver failure. Nature Communications, 2016, 7, 11916.	12.8	42
30	Involvement of p53 in the cytotoxic activity of the NAMPT inhibitor FK866 in myeloid leukemic cells. International Journal of Cancer, 2013, 132, 766-774.	5.1	40
31	Biology-Driven Approaches to Prevent and Treat Relapse of Myeloid Neoplasia after Allogeneic Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2019, 25, e128-e140.	2.0	40
32	GATA1s induces hyperproliferation of eosinophil precursors in Down syndrome transient leukemia. Leukemia, 2014, 28, 1259-1270.	7.2	36
33	A four-gene LincRNA expression signature predicts risk in multiple cohorts of acute myeloid leukemia patients. Leukemia, 2018, 32, 263-272.	7.2	36
34	Low-dose cytarabine to prevent myeloid leukemia in children with Down syndrome: TMD Prevention 2007 study. Blood Advances, 2018, 2, 1532-1540.	5.2	36
35	RNA-Binding Proteins in Acute Leukemias. International Journal of Molecular Sciences, 2020, 21, 3409.	4.1	36
36	DNMT3A mutations are rare in childhood acute myeloid leukemia. Haematologica, 2011, 96, 1238-1240.	3.5	34

#	Article	IF	CITATIONS
37	miRNAs can increase the efficiency of ex vivo platelet generation. Annals of Hematology, 2012, 91, 1673-1684.	1.8	34
38	Janus kinase mutations in the development of acute megakaryoblastic leukemia in children with and without Down's syndrome. Leukemia, 2007, 21, 1584-1587.	7.2	30
39	Survival Following Relapse in Children with Acute Myeloid Leukemia: A Report from AML-BFM and COG. Cancers, 2021, 13, 2336.	3.7	30
40	Molecular Approaches to Treating Pediatric Leukemias. Frontiers in Pediatrics, 2019, 7, 368.	1.9	29
41	Inhibition of NAMPT pathway by FK866 activates the function of p53 in HEK293T cells. Biochemical and Biophysical Research Communications, 2012, 424, 371-377.	2.1	27
42	The Regulatory Roles of Long Noncoding RNAs in Acute Myeloid Leukemia. Frontiers in Oncology, 2019, 9, 570.	2.8	26
43	The stem cell–specific long noncoding RNA HOXA10-AS in the pathogenesis of KMT2A-rearranged leukemia. Blood Advances, 2019, 3, 4252-4263.	5.2	22
44	Molecular Mechanisms of the Genetic Predisposition to Acute Megakaryoblastic Leukemia in Infants With Down Syndrome. Frontiers in Oncology, 2021, 11, 636633.	2.8	22
45	Frequency and prognostic implications of JAK 1-3 aberrations in Down syndrome acute lymphoblastic and myeloid leukemia. Leukemia, 2011, 25, 1365-1368.	7.2	20
46	The megakaryocytic transcription factor ARID3A suppresses leukemia pathogenesis. Blood, 2022, 139, 651-665.	1.4	20
47	MicroRNA-106b~25 cluster is upregulated in relapsed <i>MLL</i> rearranged pediatric acute myeloid leukemia. Oncotarget, 2016, 7, 48412-48422.	1.8	20
48	Hematologic Response to Vorinostat Treatment in Relapsed Myeloid Leukemia of Down Syndrome. Pediatric Blood and Cancer, 2016, 63, 1677-1679.	1.5	18
49	Gene correction of HAX1 reversed Kostmann disease phenotype in patient-specific induced pluripotent stem cells. Blood Advances, 2017, 1, 903-914.	5.2	18
50	Mutations of the gene <i>FNIP1</i> associated with a syndromic autosomal recessive immunodeficiency with cardiomyopathy and preâ€excitation syndrome. European Journal of Immunology, 2020, 50, 1078-1080.	2.9	17
51	Reduced <i>Erg</i> Dosage Impairs Survival of Hematopoietic Stem and Progenitor Cells. Stem Cells, 2017, 35, 1773-1785.	3.2	16
52	<i>GATA1</i> s exerts developmental stage-specific effects in human hematopoiesis. Haematologica, 2018, 103, e336-e340.	3.5	15
53	GATA1s Mutant Protein Contributes to "Down―Syndrome Megakaryoblastic Leukemia by Derepression of E2F Targets Blood, 2008, 112, 2248-2248.	1.4	13
54	YBX1 Indirectly Targets Heterochromatin-Repressed Inflammatory Response-Related Apoptosis Genes through Regulating CBX5 mRNA. International Journal of Molecular Sciences, 2020, 21, 4453.	4.1	11

#	Article	IF	CITATIONS
55	Classification of pediatric acute myeloid leukemia based on miRNA expression profiles. Oncotarget, 2017, 8, 33078-33085.	1.8	11
56	High frequency of copy number alterations in myeloid leukaemia of <scp>D</scp> own syndrome. British Journal of Haematology, 2012, 158, 800-803.	2.5	10
57	Musashi1 enhances chemotherapy resistance of pediatric glioblastoma cells in vitro. Pediatric Research, 2020, 87, 669-676.	2.3	10
58	Concomitant aberrant overexpression of RUNX1 and NCAM in regenerating bone marrow of myeloid leukemia of Down's syndrome. Haematologica, 2006, 91, 1473-80.	3.5	10
59	Immune Responses to SARS-CoV-2 Vaccination in Young Patients with Anti-CD19 Chimeric Antigen Receptor T Cell-Induced B Cell Aplasia. Transplantation and Cellular Therapy, 2022, 28, 366.e1-366.e7.	1.2	10
60	Improved Outcome in Pediatric AML - the AML-BFM 2012 Study. Blood, 2020, 136, 12-14.	1.4	9
61	Improved Generation of Patient-Specific Induced Pluripotent Stem Cells Using a Chemically-Defined and Matrigel-Based Approach. Current Molecular Medicine, 2013, 13, 765-776.	1.3	9
62	Prospects and Challenges of Reprogrammed Cells in Hematology and Oncology. Pediatric Hematology and Oncology, 2012, 29, 507-528.	0.8	7
63	The long non-coding RNA <i>Cancer Susceptibility 15</i> (<i>CASC15</i>) is induced by isocitrate dehydrogenase (IDH) mutations and maintains an immature phenotype in adult acute myeloid leukemia. Haematologica, 2020, 105, e448-453.	3.5	5
64	Microrna-106b~25 Cluster Is Involved in Relapsed MLL-Rearranged Pediatric AML. Blood, 2014, 124, 1038-1038.	1.4	5
65	Chromosome 21 gain is dispensable for transient myeloproliferative disorder driven by a novel GATA1 mutation. Leukemia, 2020, 34, 2503-2508.	7.2	4
66	Recommendations for Diagnosis and Treatment of Children with Transient Abnormal Myelopoiesis (TAM) and Myeloid Leukemia in Down Syndrome (ML-DS). Klinische Padiatrie, 2021, 233, 267-277.	0.6	4
67	Low frequency of type-I and type-II aberrations in myeloid leukemia of Down syndrome, underscoring the unique entity of this disease. Haematologica, 2012, 97, 632-634.	3.5	3
68	Chromosome 21-Encoded miR-125b and Its Role in the Development of Myeloid Leukemia in Children with Down's Syndrome Blood, 2007, 110, 716-716.	1.4	3
69	Successes and Challenges of Pediatric AML: A Report on Survival, Salvage Therapy and Causes of Deaths in the AML-BFM Study Group from 1987 -2012. Blood, 2016, 128, 450-450.	1.4	3
70	Deciphering the Role of Mir-99â^1/4125 clusters in the Hematopoietic System. Blood, 2011, 118, 213-213.	1.4	3
71	MiR-193a Is a Negative Regulator of Hematopoietic Stem Cells and Promotes Anti-Leukemic Effects in Acute Myeloid Leukemia. Blood, 2018, 132, 2627-2627.	1.4	3
72	Guideline for management of non-Down syndrome neonates with a myeloproliferative disease on behalf of the I-BFM AML Study Group and EWOG-MDS. Haematologica, 2022, 107, 759-764.	3.5	3

#	Article	IF	CITATIONS
73	Combining LSD1 and JAK-STAT inhibition targets Down syndrome-associated myeloid leukemia at its core. Leukemia, 2022, 36, 1926-1930.	7.2	3
74	Long noncoding RNAs as regulators of pediatric acute myeloid leukemia. Molecular and Cellular Pediatrics, 2022, 9, .	1.8	3
7 5	Abstract 1895: A conserved E2F1-activated gene regulatory network encompassing monocarboxylic acid transporter-1, its co-operating antisense lncRNA SLC16A1-AS1 and their common downstream targets mediates bladder cancer invasiveness. Cancer Research, 2017, 77, 1895-1895.	0.9	2
76	Identification of Novel Lncrnas That Predict Survival in AML Patients and Modulate Leukemic Cells. Blood, 2018, 132, 3909-3909.	1.4	2
77	A Genome-Wide Retroviral Insertional Mutagenesis Screen for Genes Cooperating with Truncated, Oncogenic GATA1s Blood, 2005, 106, 2990-2990.	1.4	2
78	GATA1 Mutations in Transient Leukemia and Myeloid Leukemia in "Down―Syndrome Blood, 2008, 112, 923-923.	1.4	2
79	Crispr-Cas9 Induced MLL-Rearrangements Cause Clonal Outgrowth in CD34+ Hematopoietic Stem Cells. Blood, 2015, 126, 165-165.	1.4	2
80	Acetylation of p53 Is Involved in Valproic Acid Induced Death of AML Cells. Blood, 2011, 118, 2461-2461.	1.4	1
81	mTOR Pathway Links Suppressed Autophagy to HDAC Inhibitor-Induced Apoptosis in Myeloid Leukemia,. Blood, 2011, 118, 3614-3614.	1.4	1
82	Is Prevention of Myeloid Leukemia Possible? Blood, 2009, 114, 481-481.	1.4	1
83	the miR-99â^1⁄4125 Polycistrons Promote Leukemogenesis in a Cell-Context Dependent Manner by Shifting the Balance Between TGFβ- and Wnt-Signaling. Blood, 2012, 120, 109-109.	1.4	1
84	The miRNA-193 Family Is a Potent Tumor-Suppressor and a Biomarker for Poor Prognosis in Acute Myeloid Leukemia. Blood, 2016, 128, 1534-1534.	1.4	1
85	Modelling the Progression of a Preleukemic Stage to Overt Leukemia in Children with Down Syndrome. Blood, 2018, 132, 543-543.	1.4	1
86	Deciphering the oncogenic network of PRC2-loss guided leukemogenesis. Experimental Hematology, 2017, 53, S68.	0.4	0
87	The miRNA-193B is a potent tumor-suppressor and a biomarker for poor prognosis in acute myeloid leukemia. Experimental Hematology, 2017, 53, S52.	0.4	O
88	2026 - EZH2 LOSS COOPERATES WITH LOSS OF BCOR, TET2 AND RUNX1 DURING LEUKEMOGENESIS AND REACTIVATES A FETAL GENE SIGNATURE. Experimental Hematology, 2019, 76, S48.	0.4	0
89	Chromosome 21 Encoded RUNX1 and ETS-2 Overexpression in Regenerating Hematopoiesis in Children with Down Syndrome - Implications for Leukemiogenesis? Blood, 2005, 106, 4373-4373.	1.4	O
90	Developmental Stage-Specific Interplay Between GATA1 and IGF Signaling in Fetal Hematopoiesis and Leukemogenesis Blood, 2009, 114, 386-386.	1.4	0

#	Article	IF	CITATIONS
91	Gene Expression-Based Chemical Genomics Identifies Valproic Acid to Revert the Oncogenic Effect of GATA1s In Down Syndrome Megakaryoblastic Leukemia Blood, 2010, 116, 3646-3646.	1.4	0
92	GATA1s Exerts Fetal Stage-Specific Oncogenic Effects in Human Hematopoietic Stem and Progenitor Cells. Blood, 2011, 118, 2355-2355.	1.4	0
93	Next Generation Sequencing for Minimal Residual Disease Monitoring in AML Patients with FLT3-ITD,. Blood, 2011, 118, 3548-3548.	1.4	0
94	Reduced Erg Dosage Perturbs Fetal and Adult Hematopoiesis. Blood, 2012, 120, 1189-1189.	1.4	0
95	GATA1s Induces Hyperproliferation of Eosinophil Precursors Blood, 2012, 120, 2318-2318.	1.4	0
96	Microrna Expression Profiling In Pediatric Acute Myeloid Leukemia Reveals a Tumor-Suppressive Role Of Mir-9 Associated With Translocation (8;21). Blood, 2013, 122, 1363-1363.	1.4	0
97	Lncrna Hematlas Defines Blood Lineage-Specific RNA Expression Signatures and Novel Lincrna Biomarkers. Blood, 2013, 122, 3669-3669.	1.4	0
98	Characterization Of Oncogenes On Chromosome 21 Identified By shRNA-Based Viability Screening. Blood, 2013, 122, 1201-1201.	1.4	0
99	GATA1-Centered Genetic Network on Chromosome 21 Drives Down Syndrome Acute Megakaryoblastic Leukemia. Blood, 2014, 124, 4310-4310.	1.4	0
100	The Mir-193 Family Antagonizes Stem Cell Pathways and Is a Potent Tumor Suppressor in Childhood and Adult Acute Myeloid Leukemia. Blood, 2015, 126, 1244-1244.	1.4	0
101	Members of the Mir-99/100~125 Tricistrons Cooperatively Induce a Pre-Leukemic Myeloproliferative Disorder. Blood, 2015, 126, 3579-3579.	1.4	0
102	Integrated Analysis of the Human Hematopoietic Non-Coding RNA Landscape Reveals Lnc-RNA Stem Cell Signature in AML. Blood, 2015, 126, 45-45.	1.4	0
103	Characterization of a Novel JAK1 Pseudokinase Mutation in the First Case of Trisomy 21-Independent GATA1-Mutated Transient Abnormal Myelopoiesis. Blood, 2019, 134, 4208-4208.	1.4	0
104	Myeloid Leukemia Dependencies at CTCF-Enriched Long Noncoding RNA Loci. Blood, 2021, 138, 500-500.	1.4	0
105	INSP-15. ITCC-P4: A sustainable platform of molecularly well-characterized PDX models of pediatric cancers for high throughput <i>in vivo</i> testing. Neuro-Oncology, 2022, 24, i189-i189.	1.2	0