Gabriela B Barin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2907230/publications.pdf

Version: 2024-02-01

430874 434195 1,998 32 18 31 citations h-index g-index papers 32 32 32 3265 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Growth Optimization and Device Integration of Narrowâ€Bandgap Graphene Nanoribbons. Small, 2022, 18, .	10.0	17
2	Exploring Intramolecular Methyl–Methyl Coupling on a Metal Surface for Edge-Extended Graphene Nanoribbons. Organic Materials, 2021, 03, 128-133.	2.0	3
3	Quantum electronic transport across †bite†defects in graphene nanoribbons. 2D Materials, 2021, 8, 035025.	4.4	17
4	Edge Disorder in Bottom-Up Zigzag Graphene Nanoribbons: Implications for Magnetism and Quantum Electronic Transport. Journal of Physical Chemistry Letters, 2021, 12, 4692-4696.	4.6	22
5	Optimized graphene electrodes for contacting graphene nanoribbons. Carbon, 2021, 184, 331-339.	10.3	30
6	Optical Imaging and Spectroscopy of Atomically Precise Armchair Graphene Nanoribbons. Nano Letters, 2020, 20, 1124-1130.	9.1	21
7	Controlled Quantum Dot Formation in Atomically Engineered Graphene Nanoribbon Field-Effect Transistors. ACS Nano, 2020, 14, 5754-5762.	14.6	46
8	Massive Dirac Fermion Behavior in a Low Bandgap Graphene Nanoribbon Near a Topological Phase Boundary. Advanced Materials, 2020, 32, e1906054.	21.0	44
9	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	4.4	333
10	Reversible Dehalogenation in On‧urface Aryl–Aryl Coupling. Angewandte Chemie, 2020, 132, 14210-14214.	2.0	2
11	Reversible Dehalogenation in Onâ€Surface Aryl–Aryl Coupling. Angewandte Chemie - International Edition, 2020, 59, 14106-14110.	13.8	15
12	Optimized Substrates and Measurement Approaches for Raman Spectroscopy of Graphene Nanoribbons. Physica Status Solidi (B): Basic Research, 2019, 256, 1900343.	1.5	26
13	A Universal Length-Dependent Vibrational Mode in Graphene Nanoribbons. ACS Nano, 2019, 13, 13083-13091.	14.6	36
14	Structure-dependent electrical properties of graphene nanoribbon devices with graphene electrodes. Carbon, 2019, 146, 36-43.	10.3	70
15	Surface-Synthesized Graphene Nanoribbons for Room Temperature Switching Devices: Substrate Transfer and <i>ex Situ</i> Characterization. ACS Applied Nano Materials, 2019, 2, 2184-2192.	5.0	75
16	Nanoprinted Quantum Dot–Graphene Photodetectors. Advanced Optical Materials, 2019, 7, 1900019.	7.3	53
17	Bottom-Up Synthesis of Heteroatom-Doped Chiral Graphene Nanoribbons. Journal of the American Chemical Society, 2018, 140, 9104-9107.	13.7	110
18	Engineering of robust topological quantum phases in graphene nanoribbons. Nature, 2018, 560, 209-213.	27.8	397

#	Article	IF	CITATIONS
19	Monitoring the On-Surface Synthesis of Graphene Nanoribbons by Mass Spectrometry. Analytical Chemistry, 2017, 89, 7485-7492.	6.5	7
20	Heteroatom-Doped Perihexacene from a Double Helicene Precursor: On-Surface Synthesis and Properties. Journal of the American Chemical Society, 2017, 139, 4671-4674.	13.7	61
21	Optical Investigation of Onâ€Surface Synthesized Armchair Graphene Nanoribbons. Physica Status Solidi (B): Basic Research, 2017, 254, 1700223.	1.5	14
22	Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nature Communications, 2017, 8, 633.	12.8	312
23	Characterization of Nanocarbons: From Graphene to Graphene Nanoribbons (GNRs) and Quantum Dots (GQDs)., 2017,, 315-338.		0
24	Pre-Patterned CVD Graphene: Insights on ALD deposition parameters and their influence on Al2O3 and graphene layers. MRS Advances, 2016, 1, 1401-1409.	0.9	2
25	Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance. Carbon, 2015, 84, 82-90.	10.3	187
26	Hollow carbon nanostructures obtained from hydrothermal carbonization of lignocellulosic biomass. Journal of Materials Science, 2014, 49, 665-672.	3.7	16
27	Influence of hydrothermal carbonization on formation of curved graphite structures obtained from a lignocellulosic precursor. Carbon, 2014, 78, 609-612.	10.3	40
28	Graphene-like nanostructures obtained from Biomass. Materials Research Society Symposia Proceedings, 2013, 1505, 1.	0.1	5
29	Carbon Nanostructures Synthesize from Coconut Coir Dust Mediated by Layered Clays through Hydrothermal Process. Materials Science Forum, 2012, 727-728, 1355-1359.	0.3	2
30	Semiconductor carbon composite from coir dust and sepiolite. Materials Characterization, 2011, 62, 143-147.	4.4	7
31	Thermal characterization of usnic acid/collagen-based films. Journal of Thermal Analysis and Calorimetry, 2010, 99, 1011-1014.	3.6	21
32	The action modes of Lippia sidoides (Cham) essential oil as penetration enhancers on snake skin. Journal of Thermal Analysis and Calorimetry, 2009, 97, 323-327.	3.6	7