
Erfan Dashtimoghadam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/290719/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Injectable bottlebrush hydrogels with tissue-mimetic mechanical properties. Science Advances, 2022, 8, eabm2469.	10.3	53
2	Immunomodulatory microneedle patch for periodontal tissue regeneration. Matter, 2022, 5, 666-682.	10.0	49
3	Brush Architecture and Network Elasticity: Path to the Design of Mechanically Diverse Elastomers. Macromolecules, 2022, 55, 2940-2951.	4.8	16
4	Engineered Delivery of Dental Stem ellâ€Derived Extracellular Vesicles for Periodontal Tissue Regeneration. Advanced Healthcare Materials, 2022, 11, e2102593.	7.6	15
5	Mechanically Diverse Gels with Equal Solvent Content. ACS Central Science, 2022, 8, 845-852.	11.3	10
6	Comparison of osteogenic differentiation potential of induced pluripotent stem cells and buccal fat pad stem cells on 3D-printed HA/β-TCP collagen-coated scaffolds. Cell and Tissue Research, 2021, 384, 403-421.	2.9	13
7	Osteogenic differentiation of adipose-derived mesenchymal stem cells using 3D-Printed PDLLA/ Î2-TCP nanocomposite scaffolds. Bioprinting, 2021, 21, e00117.	5.8	10
8	Injectable non-leaching tissue-mimetic bottlebrush elastomers as an advanced platform for reconstructive surgery. Nature Communications, 2021, 12, 3961.	12.8	32
9	Regulating Tissue-Mimetic Mechanical Properties of Bottlebrush Elastomers by Magnetic Field. ACS Applied Materials & Interfaces, 2021, 13, 38783-38791.	8.0	6
10	Critical-sized bone defects regeneration using a bone-inspired 3D bilayer collagen membrane in combination with leukocyte and platelet-rich fibrin membrane (L-PRF): An in vivo study. Tissue and Cell, 2020, 63, 101326.	2.2	7
11	Tissueâ€Adaptive Materials with Independently Regulated Modulus and Transition Temperature. Advanced Materials, 2020, 32, e2005314.	21.0	27
12	Tissue-Mimetic Dielectric Actuators: Free-Standing, Stable, and Solvent-Free. ACS Applied Polymer Materials, 2020, 2, 1741-1745.	4.4	19
13	In situ bone tissue engineering using gene delivery nanocomplexes. Acta Biomaterialia, 2020, 108, 326-336.	8.3	41
14	Fabrication and characterization of dextran/nanocrystalline β-tricalcium phosphate nanocomposite hydrogel scaffolds. International Journal of Biological Macromolecules, 2020, 148, 434-448.	7.5	46
15	Bottlebrush Bridge between Soft Gels and Firm Tissues. ACS Central Science, 2020, 6, 413-419.	11.3	56
16	Vibrational and sonochemical characterization of ultrasonic endodontic activating devices for translation to clinical efficacy. Materials Science and Engineering C, 2020, 109, 110646.	7.3	5
17	Tunable viscoelastic features of aqueous mixtures of thermosensitive ethyl(hydroxyethyl)cellulose and cellulose nanowhiskers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 590, 124489.	4.7	6
18	Nonlinear Elasticity and Swelling of Comb and Bottlebrush Networks. Macromolecules, 2019, 52, 5095-5101.	4.8	29

#	Article	IF	CITATIONS
19	Enhancing cell seeding and osteogenesis of MSCs on 3D printed scaffolds through injectable BMP2 immobilized ECM-Mimetic gel. Dental Materials, 2019, 35, 990-1006.	3.5	48
20	3D printed tissue engineered model for bone invasion of oral cancer. Tissue and Cell, 2018, 52, 71-77.	2.2	43
21	Nanomagnetic-mediated drug delivery for the treatment of dental disease. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 919-927.	3.3	21
22	Dextran hydrogels incorporated with bioactive glass-ceramic: Nanocomposite scaffolds for bone tissue engineering. Carbohydrate Polymers, 2018, 190, 281-294.	10.2	71
23	Collagenous matrix supported by a 3D-printed scaffold for osteogenic differentiation of dental pulp cells. Dental Materials, 2018, 34, 209-220.	3.5	26
24	Effects of chain length of the cross-linking agent on rheological and swelling characteristics of dextran hydrogels. Carbohydrate Polymers, 2018, 181, 141-149.	10.2	43
25	Simulation of cortico-cancellous bone structure by 3D printing of bilayer calcium phosphate-based scaffolds. Bioprinting, 2017, 6, 1-7.	5.8	46
26	Experimental investigation and molecular dynamics simulation of acid-doped polybenzimidazole as a new membrane for air-breathing microbial fuel cells. Journal of Membrane Science, 2017, 535, 221-229.	8.2	19
27	Ultraviolet-induced surface grafting of octafluoropentyl methacrylate on polyether ether ketone for inducing antibiofilm properties. Journal of Biomaterials Applications, 2017, 32, 3-11.	2.4	14
28	Synthesis and temperature-induced self-assembly of a positively charged symmetrical pentablock terpolymer in aqueous solutions. European Polymer Journal, 2017, 97, 158-168.	5.4	9
29	Nanoscale Optoregulation of Neural Stem Cell Differentiation by Intracellular Alteration of Redox Balance. Advanced Functional Materials, 2017, 27, 1701420.	14.9	14
30	A current overview of materials and strategies for potential use in maxillofacial tissue regeneration. Materials Science and Engineering C, 2017, 70, 913-929.	7.3	71
31	On-chip detection of gel transition temperature using a novel micro-thermomechanical method. PLoS ONE, 2017, 12, e0183492.	2.5	3
32	Microfluidic Directed Synthesis of Alginate Nanogels with Tunable Pore Size for Efficient Protein Delivery. Langmuir, 2016, 32, 4996-5003.	3.5	97
33	Rheological Study and Molecular Dynamics Simulation of Biopolymer Blend Thermogels of Tunable Strength. Biomacromolecules, 2016, 17, 3474-3484.	5.4	18
34	Microfluidic Manipulation of Core/Shell Nanoparticles for Oral Delivery of Chemotherapeutics: A New Treatment Approach for Colorectal Cancer. Advanced Materials, 2016, 28, 4134-4141.	21.0	74
35	Understanding biophysical behaviours of microfluidic-synthesized nanoparticles at nano-biointerface. Colloids and Surfaces B: Biointerfaces, 2016, 145, 802-811.	5.0	21
36	Wrapping carbon nanotubes by biopolymer chains: Role of nanointerfaces in detection of vapors in conductive polymer composite transducers. Polymer Composites, 2016, 37, 2803-2810.	4.6	9

#	Article	IF	CITATIONS
37	Novel chitosan-based nanobiohybrid membranes for wound dressing applications. RSC Advances, 2016, 6, 7701-7711.	3.6	56
38	lonic nanopeapods: Next-generation proton conducting membranes based on phosphotungstic acid filled carbon nanotube. Nano Energy, 2016, 23, 114-121.	16.0	32
39	Enhanced osteogenic differentiation of stem cells via microfluidics synthesized nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1809-1819.	3.3	49
40	Onâ€Chip Fabrication of Paclitaxelâ€Loaded Chitosan Nanoparticles for Cancer Therapeutics. Advanced Functional Materials, 2014, 24, 432-441.	14.9	103
41	Thermoresponsive biopolymer hydrogels with tunable gel characteristics. RSC Advances, 2014, 4, 39386-39393.	3.6	19
42	Air-breathing microbial fuel cell with enhanced performance using nanocomposite proton exchange membranes. Polymer, 2014, 55, 6102-6109.	3.8	18
43	Cellulose nanowhiskers to regulate the microstructure of perfluorosulfonate ionomers for high-performance fuel cells. Journal of Materials Chemistry A, 2014, 2, 11334.	10.3	45
44	Magnetically Aligned Nanodomains: Application in High-Performance Ion Conductive Membranes. ACS Applied Materials & Interfaces, 2014, 6, 7099-7107.	8.0	30
45	Drug Delivery: Onâ€Chip Fabrication of Paclitaxel‣oaded Chitosan Nanoparticles for Cancer Therapeutics (Adv. Funct. Mater. 4/2014). Advanced Functional Materials, 2014, 24, 418-418.	14.9	2
46	Microfluidicâ€Assisted Selfâ€Assembly of Complex Dendritic Polyethylene Drug Delivery Nanocapsules. Advanced Materials, 2014, 26, 3118-3123.	21.0	49
47	Superacid-doped polybenzimidazole-decorated carbon nanotubes: a novel high-performance proton exchange nanocomposite membrane. Nanoscale, 2013, 5, 11710.	5.6	48
48	Organically modified montmorillonite and chitosan–phosphotungstic acid complex nanocomposites as high performance membranes for fuel cell applications. Journal of Solid State Electrochemistry, 2013, 17, 2123-2137.	2.5	27
49	A microfluidic approach to synthesizing high-performance microfibers with tunable anhydrous proton conductivity. Lab on A Chip, 2013, 13, 4549.	6.0	17
50	Microfluidic assisted self-assembly of chitosan based nanoparticles as drug delivery agents. Lab on A Chip, 2013, 13, 204-207.	6.0	121
51	Microfluidic self-assembly of polymeric nanoparticles with tunable compactness for controlled drug delivery. Polymer, 2013, 54, 4972-4979.	3.8	70
52	Oscillatory rheometric tracing of dextran crosslinking reaction in aqueous semidilute solutions – Effects of formulation on the gelation properties. Polymer, 2013, 54, 2999-3007.	3.8	12
53	Nafion/chitosan-wrapped CNT nanocomposite membrane for high-performance direct methanol fuel cells. RSC Advances, 2013, 3, 7337.	3.6	52
54	Morphological Tuning of Polymeric Nanoparticles via Microfluidic Platform for Fuel Cell Applications. Journal of the American Chemical Society, 2012, 134, 18904-18907.	13.7	55

#	Article	IF	CITATIONS
55	Triple-layer proton exchange membranes based on chitosan biopolymer with reduced methanol crossover for high-performance direct methanol fuel cells application. Polymer, 2012, 53, 2643-2651.	3.8	54
56	Molecular dynamics simulation study of proton diffusion in polymer electrolyte membranes based on sulfonated poly (ether ether ketone). International Journal of Hydrogen Energy, 2012, 37, 10256-10264.	7.1	65
57	Investigation of gelation mechanism of an injectable hydrogel based on chitosan by rheological measurements for a drug delivery application. Soft Matter, 2012, 8, 7128.	2.7	70
58	Direct methanol fuel cell performance of sulfonated poly (2,6-dimethyl-1,4-phenylene) Tj ETQq0 0 0 rgBT /Overlo Energy, 2011, 36, 3688-3696.	ck 10 Tf 50 7.1) 627 Td (oxi 39
59	A high-performance chitosan-based double layer proton exchange membrane with reduced methanol crossover. International Journal of Hydrogen Energy, 2011, 36, 6105-6111.	7.1	35
60	Preparation and characterization of nanocomposite polyelectrolyte membranes based on Nafion® ionomer and nanocrystalline hydroxyapatite. Polymer, 2011, 52, 1286-1296.	3.8	37
61	Effects of organically modified nanoclay on the transport properties and electrochemical performance of acidâ€doped polybenzimidazole membranes. Journal of Applied Polymer Science, 2010, 117, 1227-1233.	2.6	20
62	Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone). Renewable Energy, 2010, 35, 226-231.	8.9	63
63	Electrochemical investigation of sulfonated poly(ether ether ketone)/clay nanocomposite membranes for moderate temperature fuel cell applications. Journal of Power Sources, 2010, 195, 2450-2456.	7.8	86
64	Novel nanocomposite proton exchange membranes based on Nafion® and AMPS-modified montmorillonite for fuel cell applications. Journal of Membrane Science, 2010, 365, 286-293.	8.2	70
65	Structural modification of chitosan biopolymer as a novel polyelectrolyte membrane for green power generation. Polymers for Advanced Technologies, 2010, 21, 726-734.	3.2	63
66	Nanoscale Membrane Based on Filled Nanoporous Anodic Alumina with Proton-conducting Polymer for Fuel Cell Applications: Primary Morphological Evaluation. ECS Transactions, 2009, 25, 1085-1090.	0.5	3
67	Characterization of nanohybrid membranes for direct methanol fuel cell applications. Solid State Ionics, 2009, 180, 1497-1504.	2.7	35
68	Nafion®/bio-functionalized montmorillonite nanohybrids as novel polyelectrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 2009, 190, 318-321.	7.8	67