Kunhong Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2906997/publications.pdf

Version: 2024-02-01

136950 128289 6,473 65 32 60 h-index citations g-index papers 66 66 66 7333 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reperfusion mediates heme impairment with increased protein cysteine sulfonation of mitochondrial complex III in the post-ischemic heart. Journal of Molecular and Cellular Cardiology, 2021, 161, 23-38.	1.9	5
2	Spatial bias in cAMP generation determines biological responses to PTH type 1 receptor activation. Science Signaling, 2021, 14, eabc5944.	3.6	43
3	\hat{l}^2 arrestin-1 regulates DNA repair by acting as an E3-ubiquitin ligase adaptor for 53BP1. Cell Death and Differentiation, 2020, 27, 1200-1213.	11.2	12
4	G _{q$/11$} -dependent regulation of endosomal cAMP generation by parathyroid hormone class B GPCR. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7455-7460.	7.1	30
5	PTH hypersecretion triggered by a GABAB1 and Ca2+-sensing receptor heterocomplex in hyperparathyroidism. Nature Metabolism, 2020, 2, 243-255.	11.9	27
6	Allosteric interactions in the parathyroid hormone GPCR–arrestin complex formation. Nature Chemical Biology, 2020, 16, 1096-1104.	8.0	38
7	Quantitative Proteomics for Monitoring Renal Transplant Injury. Proteomics - Clinical Applications, 2020, 14, e1900036.	1.6	13
8	Parathyroid hormone initiates dynamic NHERF1 phosphorylation cycling and conformational changes that regulate NPT2A-dependent phosphate transport. Journal of Biological Chemistry, 2019, 294, 4546-4571.	3.4	22
9	Parallel Post-Translational Modification Scanning Enhancing Hydrogen–Deuterium Exchange-Mass Spectrometry Coverage of Key Structural Regions. Analytical Chemistry, 2019, 91, 6976-6980.	6.5	10
10	Proteomic Analysis of the \hat{I}^2 -Arrestin Interactomes. Methods in Molecular Biology, 2019, 1957, 217-232.	0.9	1
11	A Mass Spectrometry-Based Structural Assay for Activation-Dependent Conformational Changes in β-Arrestins. Methods in Molecular Biology, 2019, 1957, 293-308.	0.9	1
12	Ca ²⁺ allostery in PTH-receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3294-3299.	7.1	42
13	<scp>TEAD</scp> 4 exerts proâ€metastatic effects and is negatively regulated by miR6839â€3p in lung adenocarcinoma progression. Journal of Cellular and Molecular Medicine, 2018, 22, 3560-3571.	3.6	30
14	Site-specific polyubiquitination differentially regulates parathyroid hormone receptor–initiated MAPK signaling and cell proliferation. Journal of Biological Chemistry, 2018, 293, 5556-5571.	3 . 4	16
15	Elucidating structural and molecular mechanisms of \hat{l}^2 -arrestin-biased agonism at GPCRs via MS-based proteomics. Cellular Signalling, 2018, 41, 56-64.	3.6	17
16	Revealing the architecture of protein complexes by an orthogonal approach combining HDXMS, CXMS, and disulfide trapping. Nature Protocols, 2018, 13, 1403-1428.	12.0	21
17	Diseaseâ€associated mutation in PTH reveals molecular mechanisms in endosomal GPCR signaling. FASEB Journal, 2018, 32, 685.7.	0.5	O
18	Quantitative proteomics reveals key proteins regulated by eicosapentaenoic acid in endothelial activation. Biochemical and Biophysical Research Communications, 2017, 487, 464-469.	2.1	6

#	Article	IF	Citations
19	Origins of PDZ Binding Specificity. A Computational and Experimental Study Using NHERF1 and the Parathyroid Hormone Receptor. Biochemistry, 2017, 56, 2584-2593.	2.5	11
20	\hat{I}^2 2-adrenergic receptor control of endosomal PTH receptor signaling via $\hat{GI}^2\hat{I}^3$. Nature Chemical Biology, 2017, 13, 259-261.	8.0	50
21	Actin-Sorting Nexin 27 (SNX27)-Retromer Complex Mediates Rapid Parathyroid Hormone Receptor Recycling. Journal of Biological Chemistry, 2016, 291, 10986-11002.	3.4	56
22	Phosphorylation of Src by phosphoinositide 3-kinase regulates beta-adrenergic receptor-mediated EGFR transactivation. Cellular Signalling, 2016, 28, 1580-1592.	3.6	21
23	Convergent Signaling Pathways Regulate Parathyroid Hormone and Fibroblast Growth Factor-23 Action on NPT2A-mediated Phosphate Transport. Journal of Biological Chemistry, 2016, 291, 18632-18642.	3.4	31
24	"Barcode―and Differential Effects of GPCR Phosphorylation by Different GRKs. Methods in Pharmacology and Toxicology, 2016, , 75-120.	0.2	2
25	Functional Human α7 Nicotinic Acetylcholine Receptor (nAChR) Generated from Escherichia coli. Journal of Biological Chemistry, 2016, 291, 18276-18282.	3.4	8
26	Studying the regulation ofÂendosomal cAMP production in GPCR signaling. Methods in Cell Biology, 2016, 132, 109-126.	1.1	8
27	Prognostic significance of USP33 in advanced colorectal cancer patients: new insights into \hat{l}^2 -arrestin-dependent ERK signaling. Oncotarget, 2016, 7, 81223-81240.	1.8	59
28	The power of mass spectrometry in structural characterization of GPCR signaling. Journal of Receptor and Signal Transduction Research, 2015, 35, 213-219.	2.5	9
29	Abstract 274: Carvedilol Stimulated GÎ \pm i-Î 2 -Arrestin Biased Î 2 1 Adrenergic Receptor Signaling. Circulation Research, 2015, 117, .	4.5	0
30	The Posterior Cricoarytenoid Muscle Is Spared from MuRF1-Mediated Muscle Atrophy in Mice with Acute Lung Injury. PLoS ONE, 2014, 9, e87587.	2.5	5
31	Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature, 2014, 509, 492-496.	27.8	425
32	Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature, 2014, 512, 218-222.	27.8	433
33	Recent developments in biased agonism. Current Opinion in Cell Biology, 2014, 27, 18-24.	5.4	247
34	Monitoring protein conformational changes and dynamics using stable-isotope labeling and mass spectrometry. Nature Protocols, 2014, 9, 1301-1319.	12.0	49
35	Abstract IA09: Copper is required for oncogenic BRAF signaling and tumorigenesis. , 2014, , .		1
36	Overexpression of TNNI3K, a cardiac-specific MAPKKK, promotes cardiac dysfunction. Journal of Molecular and Cellular Cardiology, 2013, 54, 101-111.	1.9	37

#	Article	IF	CITATIONS
37	Structure of active \hat{I}^2 -arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature, 2013, 497, 137-141.	27.8	393
38	MARCH2 promotes endocytosis and lysosomal sorting of carvedilol-bound \hat{I}^2 2-adrenergic receptors. Journal of Cell Biology, 2012, 199, 817-830.	5.2	53
39	A stress response pathway regulates DNA damage through \hat{I}^2 2-adrenoreceptors and \hat{I}^2 -arrestin-1. Nature, 2011, 477, 349-353.	27.8	360
40	Emerging paradigms of \hat{l}^2 -arrestin-dependent seven transmembrane receptor signaling. Trends in Biochemical Sciences, 2011, 36, 457-469.	7.5	380
41	Distinct Phosphorylation Sites on the \hat{l}^2 ₂ -Adrenergic Receptor Establish a Barcode That Encodes Differential Functions of \hat{l}^2 -Arrestin. Science Signaling, 2011, 4, ra51.	3.6	535
42	Multiple ligand-specific conformations of the \hat{l}^2 2-adrenergic receptor. Nature Chemical Biology, 2011, 7, 692-700.	8.0	229
43	A Tale of Two Sites – How ubiquitination of a G protein-coupled receptor is coupled to its lysosomal trafficking from distinct receptor domains. Communicative and Integrative Biology, 2011, 4, 528-531.	1.4	10
44	\hat{I}^2 2-Adrenergic Receptor Lysosomal Trafficking Is Regulated by Ubiquitination of Lysyl Residues in Two Distinct Receptor Domains. Journal of Biological Chemistry, 2011, 286, 12785-12795.	3.4	49
45	A tale of two sites: How ubiquitination of a G protein-coupled receptor is coupled to its lysosomal trafficking from distinct receptor domains. Communicative and Integrative Biology, 2011, 4, 528-31.	1.4	8
46	Global phosphorylation analysis of β-arrestin–mediated signaling downstream of a seven transmembrane receptor (7TMR). Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15299-15304.	7.1	182
47	Arresting a Transient Receptor Potential (TRP) Channel. Journal of Biological Chemistry, 2010, 285, 30115-30125.	3.4	92
48	\hat{l}^2 -Arrestin-dependent signaling and trafficking of 7-transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6650-6655.	7.1	146
49	Oxygen-Regulated \hat{l}^2 ₂ -Adrenergic Receptor Hydroxylation by EGLN3 and Ubiquitylation by pVHL. Science Signaling, 2009, 2, ra33.	3.6	137
50	BiPS, a Photocleavable, Isotopically Coded, Fluorescent Cross-linker for Structural Proteomics. Molecular and Cellular Proteomics, 2009, 8, 273-286.	3.8	55
51	Nedd4 Mediates Agonist-dependent Ubiquitination, Lysosomal Targeting, and Degradation of the β2-Adrenergic Receptor. Journal of Biological Chemistry, 2008, 283, 22166-22176.	3.4	175
52	î²-Arrestin–Mediated Localization of Smoothened to the Primary Cilium. Science, 2008, 320, 1777-1781.	12.6	247
53	The Active Conformation of β-Arrestin1. Journal of Biological Chemistry, 2007, 282, 21370-21381.	3.4	121
54	Ubiquitination of \hat{l}^2 -Arrestin Links Seven-transmembrane Receptor Endocytosis and ERK Activation. Journal of Biological Chemistry, 2007, 282, 29549-29562.	3.4	121

#	Article	IF	CITATION
55	Functional specialization of \hat{l}^2 -arrestin interactions revealed by proteomic analysis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12011-12016.	7.1	371
56	\hat{l}^2 -Arrestin-dependent, G Protein-independent ERK1/2 Activation by the \hat{l}^2 2 Adrenergic Receptor. Journal of Biological Chemistry, 2006, 281, 1261-1273.	3.4	651
57	Conformational Changes in βâ€arrestin1: The Importance of βâ€arrestin1's Nâ€domain. FASEB Journal, 2006, A114.	20. 0.5	O
58	Activation-dependent Conformational Changes in \hat{l}^2 -Arrestin 2. Journal of Biological Chemistry, 2004, 279, 55744-55753.	3.4	135
59	The Extra Fragment of the Ironâ^'Sulfur Protein (Residues 96-107) of Rhodobacter sphaeroides Cytochrome bc1 Complex Is Required for Protein Stability. Biochemistry, 2004, 43, 1488-1495.	2.5	14
60	Design of a Ruthenium-Labeled CytochromecDerivative to Study Electron Transfer with the Cytochromebc1Complexâ€. Biochemistry, 2003, 42, 2816-2824.	2.5	53
61	Effect of Famoxadone on Photoinduced Electron Transfer between the Iron-Sulfur Center and Cytochrome c 1 in the Cytochrome bc 1 Complex. Journal of Biological Chemistry, 2003, 278, 11419-11426.	3.4	23
62	Photoinduced Electron Transfer between the Rieske Iron-Sulfur Protein and Cytochrome c1 in theRhodobacter sphaeroides Cytochromebc1 Complex. Journal of Biological Chemistry, 2002, 277, 31072-31078.	3.4	43
63	Inter- and intra-molecular electron transfer in the cytochrome bc1 complex. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1555, 65-70.	1.0	28
64	Evidence for the Intertwined Dimer of the Cytochrome bc 1 Complex in Solution. Journal of Biological Chemistry, 2001, 276, 46125-46131.	3.4	14
65	Confirmation of the Involvement of Protein Domain Movement during the Catalytic Cycle of the Cytochrome bc1Complex by the Formation of an Intersubunit Disulfide Bond between Cytochrome b	3.4	62