
Thomas Gasser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2906993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CSF and Serum Levels of Inflammatory Markers in PD: Sparse Correlation, Sex Differences and Association With Neurodegenerative Biomarkers. Frontiers in Neurology, 2022, 13, 834580.	2.4	17
2	The Mutation Matters: <scp>CSF</scp> Profiles of <scp>GCase</scp> , Sphingolipids, αâ€Synuclein in <scp>PD_{GBA}</scp> . Movement Disorders, 2021, 36, 1216-1228.	3.9	40
3	A Novel SNCA A30G Mutation Causes Familial Parkinson's Disease. Movement Disorders, 2021, 36, 1624-1633.	3.9	54
4	Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nature Genetics, 2021, 53, 294-303.	21.4	198
5	Genomewide Association Studies of <scp><i>LRRK2</i></scp> Modifiers of Parkinson's Disease. Annals of Neurology, 2021, 90, 76-88.	5.3	30
6	<scp>CSF</scp> Protein Level of Neurotransmitter Secretion, Synaptic Plasticity, and Autophagy in <scp>PD</scp> and <scp>DLB</scp> . Movement Disorders, 2021, 36, 2595-2604.	3.9	15
7	Reply to: "α‧ynuclein (<scp><i>SNCA</i></scp>) <scp>A30G</scp> Mutation as a Cause of a Complex Phenotype Without Parkinsonism― Movement Disorders, 2021, 36, 2212-2213.	3.9	0
8	The longevity gene Klotho and its cerebrospinal fluid protein profiles as a modifier for Parkinson´s disease. European Journal of Neurology, 2021, 28, 1557-1565.	3.3	12
9	Polygenic Risk Scores Contribute to Personalized Medicine of Parkinson's Disease. Journal of Personalized Medicine, 2021, 11, 1030.	2.5	12
10	Association between CSF alpha-synuclein seeding activity and genetic status in Parkinson's disease and dementia with Lewy bodies. Acta Neuropathologica Communications, 2021, 9, 175.	5.2	49
11	Parkinson's Disease: <i>Glucocerebrosidase 1</i> Mutation Severity Is Associated with CSF Alphaâ€ S ynuclein Profiles. Movement Disorders, 2020, 35, 495-499.	3.9	32
12	Genetic modifiers of risk and age at onset in GBA associated Parkinson's disease and Lewy body dementia. Brain, 2020, 143, 234-248.	7.6	149
13	Insulin sensitivity predicts cognitive decline in individuals with prediabetes. BMJ Open Diabetes Research and Care, 2020, 8, e001741.	2.8	42
14	Human Dopaminergic Neurons Lacking PINK1 Exhibit Disrupted Dopamine Metabolism Related to Vitamin B6 Co-Factors. IScience, 2020, 23, 101797.	4.1	20
15	A patient-based model of RNA mis-splicing uncovers treatment targets in Parkinson's disease. Science Translational Medicine, 2020, 12, .	12.4	24
16	The Discovery of <i>LRRK2</i> Mutations as a Cause of Parkinson's Disease. Movement Disorders, 2020, 35, 551-554.	3.9	5
17	Penetrance of Parkinson's Disease in <i>LRRK2</i> p.G2019S Carriers Is Modified by a Polygenic Risk Score. Movement Disorders, 2020, 35, 774-780.	3.9	57
18	<scp>CSF NFL</scp> in a Longitudinally Assessed <scp>PD</scp> Cohort: Age Effects and Cognitive Trajectories. Movement Disorders, 2020, 35, 1138-1144.	3.9	36

THOMAS GASSER

#	Article	IF	CITATIONS
19	Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2019, 18, 1091-1102.	10.2	1,414
20	<i>MAPT</i> p.V363I mutation. Neurology: Genetics, 2019, 5, e347.	1.9	10
21	The endocytic membrane trafficking pathway plays a major role in the risk of Parkinson's disease. Movement Disorders, 2019, 34, 460-468.	3.9	66
22	A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity. Acta Neuropathologica, 2019, 138, 237-250.	7.7	87
23	Dementia with lewy bodies: <i>GBA1</i> mutations are associated with cerebrospinal fluid alphaâ€synuclein profile. Movement Disorders, 2019, 34, 1069-1073.	3.9	24
24	Parkinson's disease age at onset genomeâ€wide association study: Defining heritability, genetic loci, and αâ€synuclein mechanisms. Movement Disorders, 2019, 34, 866-875.	3.9	258
25	Parkinson's disease: evolution of cognitive impairment and CSF Aβ _{1–42} profiles in a prospective longitudinal study. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 165-170.	1.9	14
26	Recommendations of the Global Multiple System Atrophy Research Roadmap Meeting. Neurology, 2018, 90, 74-82.	1.1	23
27	Polygenic load: Earlier disease onset but similar longitudinal progression in Parkinson's disease. Movement Disorders, 2018, 33, 1349-1353.	3.9	10
28	Cholinergic Pathway SNPs and Postural Control in 477 Older Adults. Frontiers in Aging Neuroscience, 2018, 10, 260.	3.4	1
29	Generation of iPSCs carrying a common LRRK2 risk allele for in vitro modeling of idiopathic Parkinson's disease. PLoS ONE, 2018, 13, e0192497.	2.5	20
30	NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiology of Aging, 2017, 57, 247.e9-247.e13.	3.1	108
31	Cognitive impairment in Glucocerebrosidase (GBA)â€associated PD: Not primarily associated with cerebrospinal fluid Abeta and Tau profiles. Movement Disorders, 2017, 32, 1780-1783.	3.9	19
32	Metformin reverses TRAP1 mutation-associated alterations in mitochondrial function in Parkinson's disease. Brain, 2017, 140, 2444-2459.	7.6	76
33	SNPs in AÎ ² clearance proteins. Neurology, 2017, 89, 2335-2340.	1.1	13
34	Functional Characterization of Rare RAB12 Variants and Their Role in Musician's and Other Dystonias. Genes, 2017, 8, 276.	2.4	7
35	Needs and Requirements of Modern Biobanks on the Example of Dystonia Syndromes. Frontiers in Neurology, 2017, 8, 9.	2.4	6
36	In-vivo evidence that high mobility group box 1 exerts deleterious effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model and Parkinson's disease which can be attenuated by glycyrrhizin. Neurobiology of Disease, 2016, 91, 59-68.	4.4	78

THOMAS GASSER

#	Article	IF	CITATIONS
37	<i>GBA</i> â€associated Parkinson's disease: Reduced survival and more rapid progression in a prospective longitudinal study. Movement Disorders, 2015, 30, 407-411.	3.9	214
38	Polygenic risk of <scp>P</scp> arkinson disease is correlated with disease age at onset. Annals of Neurology, 2015, 77, 582-591.	5.3	115
39	Fruit flies, bile acids, and Parkinson disease. Neurology, 2015, 85, 838-839.	1.1	9
40	Parkinson Disease and Other Synucleinopathies. , 2015, , 281-302.		5
41	<i>EIF4G1</i> is neither a strong nor a common risk factor for Parkinson's disease: evidence from large European cohorts: Table1. Journal of Medical Genetics, 2015, 52, 37-41.	3.2	23
42	Comparable Autoantibody Serum Levels against Amyloid- and Inflammation-Associated Proteins in Parkinson's Disease Patients and Controls. PLoS ONE, 2014, 9, e88604.	2.5	36
43	iPSC-derived neurons from GBA1-associated Parkinson's disease patients show autophagic defects and impaired calcium homeostasis. Nature Communications, 2014, 5, 4028.	12.8	436
44	The natural history of multiple system atrophy: a prospective European cohort study. Lancet Neurology, The, 2013, 12, 264-274.	10.2	426
45	Genetic Correction of a LRRK2 Mutation in Human iPSCs Links Parkinsonian Neurodegeneration to ERK-Dependent Changes in Gene Expression. Cell Stem Cell, 2013, 12, 354-367.	11.1	448
46	Derivation and Expansion Using Only Small Molecules of Human Neural Progenitors for Neurodegenerative Disease Modeling. PLoS ONE, 2013, 8, e59252.	2.5	370
47	Comprehensive Research Synopsis and Systematic Meta-Analyses in Parkinson's Disease Genetics: The PDGene Database. PLoS Genetics, 2012, 8, e1002548.	3.5	495
48	Priorities in Parkinson's disease research. Nature Reviews Drug Discovery, 2011, 10, 377-393.	46.4	364
49	Milestones in PD genetics. Movement Disorders, 2011, 26, 1042-1048.	3.9	147
50	Clinical and brain imaging characteristics in leucineâ€ r ich repeat kinase 2–associated PD and asymptomatic mutation carriers. Movement Disorders, 2011, 26, 2335-2342.	3.9	65
51	Neuropathological assessment of Parkinson's disease: refining the diagnostic criteria. Lancet Neurology, The, 2009, 8, 1150-1157.	10.2	734
52	Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. Lancet Neurology, The, 2008, 7, 583-590.	10.2	1,340
53	α2-Macroglobulin, lipoprotein receptor-related protein and lipoprotein receptor-associated protein and the genetic risk for developing Alzheimer's disease. Neuroscience Letters, 2006, 400, 187-190.	2.1	18
54	Epsilon-sarcoglycan is not involved in sporadic Gilles de la Tourette syndrome. Neurogenetics, 2005, 6, 55-56.	1.4	3

THOMAS GASSER

#	Article	IF	CITATIONS
55	Genetics of parkinsonism. , 2005, , 586-597.		1
56	Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology. Neuron, 2004, 44, 601-607.	8.1	2,653
57	State of the art review: Molecular diagnosis of inherited movement disorders.MovementDisorders Society task force on molecular diagnosis. Movement Disorders, 2003, 18, 3-18.	3.9	40
58	Overview of the genetics of parkinsonism. Advances in Neurology, 2003, 91, 143-52.	0.8	18
59	Myoclonus-dystonia syndrome: ε-sarcoglycan mutations and phenotype. Annals of Neurology, 2002, 52, 489-492.	5.3	143
60	Novel mutation in the TOR1A (DYT1) gene in atypical, early onset dystonia and polymorphisms in dystonia and early onset parkinsonism. Neurogenetics, 2001, 3, 133-143.	1.4	155
61	Genetics of Parkinson's disease. Journal of Neurology, 2001, 248, 833-840.	3.6	142
62	Cervical dystonia in monozygotic twins: Case report and review of the literature. Movement Disorders, 2001, 16, 714-718.	3.9	20
63	Inherited myoclonus-dystonia syndrome: Narrowing the 7q21-q31 locus in German families. Annals of Neurology, 2001, 49, 121-124.	5.3	49
64	Mutations in the gene encoding É≻sarcoglycan cause myoclonus–dystonia syndrome. Nature Genetics, 2001, 29, 66-69.	21.4	523
65	Small in-frame deletions and missense mutations in CADASIL: 3D models predict misfolding of Notch3v EGF-like repeat domains. European Journal of Human Genetics, 2000, 8, 280-285.	2.8	125
66	Clinical Characteristics and Frequency of the Hereditary Restless Legs Syndrome in a Population of 300 Patients. Sleep, 2000, 23, 1-6.	1.1	299
67	Association between Early-Onset Parkinson's Disease and Mutations in the <i>Parkin</i> Gene. New England Journal of Medicine, 2000, 342, 1560-1567.	27.0	1,448
68	GAG deletion in the DYT1 gene in early limb-onset idiopathic torsion dystonia in Germany. Movement Disorders, 1999, 14, 681-683.	3.9	59
69	A susceptibility locus for Parkinson's disease maps to chromosome 2p13. Nature Genetics, 1998, 18, 262-265.	21.4	486
70	The ?-synuclein Ala53Thr mutation is not a common cause of familial Parkinson's disease: A study of 230 European cases. Annals of Neurology, 1998, 44, 270-273.	5.3	91
71	123I-IBZM binding compared with long-term clinical follow up in patients with de novo parkinsonism. Movement Disorders, 1998, 13, 16-19.	3.9	79
72	Clinical symptoms and possible anticipation in a large kindred of familial restless legs syndrome. Movement Disorders, 1996, 11, 389-394.	3.9	127