Jin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2906204/publications.pdf Version: 2024-02-01

331670 345221 1,396 44 21 36 citations h-index g-index papers 46 46 46 2010 all docs docs citations times ranked citing authors

Тім Гіні

#	Article	IF	CITATIONS
1	Novel Use of Hypoxia-Inducible Polymerizable Protein to Augment Chemotherapy for Pancreatic Cancer. Pharmaceutics, 2022, 14, 128.	4.5	1
2	Rational Engineering of CRISPR-Cas9 Nuclease to Attenuate Position-Dependent Off-Target Effects. CRISPR Journal, 2022, 5, 329-340.	2.9	9
3	Sparse group selection and analysis of <scp>functionâ€related</scp> residue for <scp>proteinâ€state</scp> recognition. Journal of Computational Chemistry, 2022, 43, 1342-1354.	3.3	Ο
4	Factors Governing Selectivity of Dopamine Receptor Binding Compounds for D2R and D3R Subtypes. Journal of Chemical Information and Modeling, 2021, 61, 2829-2843.	5.4	2
5	Tribute to Ruth Nussinov. Journal of Physical Chemistry B, 2021, 125, 6733-6734.	2.6	0
6	Coordinated Actions of Cas9 HNH and RuvC Nuclease Domains Are Regulated by the Bridge Helix and the Target DNA Sequence. Biochemistry, 2021, , .	2.5	11
7	Allosteric Modulation of Small Molecule Drugs on ACE2 Conformational Change upon Binding to SARS-CoV-2 Spike Protein. , 2021, , .		5
8	A positive, growth-based PAM screen identifies noncanonical motifs recognized by the <i>S. pyogenes</i> Cas9. Science Advances, 2020, 6, eabb4054.	10.3	21
9	Filtering out Low-Affinity Bitropic Ligands for Dopamine Receptors Based on Ligand Conformation. ACS Chemical Neuroscience, 2020, 11, 2523-2527.	3.5	1
10	Editorial overview: Allosteric assemblies. Current Opinion in Structural Biology, 2020, 62, vi-vii.	5.7	0
11	Allosteric regulation of CRISPR-Cas9 for DNA-targeting and cleavage. Current Opinion in Structural Biology, 2020, 62, 166-174.	5.7	24
12	Design, synthesis, and evaluation of N-(4-(4-phenyl piperazin-1-yl)butyl)-4-(thiophen-3-yl)benzamides as selective dopamine D3 receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2690-2694.	2.2	17
13	Probing Protein Allostery as a Residue-Specific Concept via Residue Response Maps. Journal of Chemical Information and Modeling, 2019, 59, 4691-4705.	5.4	17
14	Assessing the Performance of the Nonbonded Mg ²⁺ Models in a Two-Metal-Dependent Ribonuclease. Journal of Chemical Information and Modeling, 2019, 59, 399-408.	5.4	10
15	Structural and functional insights into the bona fide catalytic state of Streptococcus pyogenes Cas9 HNH nuclease domain. ELife, 2019, 8, .	6.0	25
16	Stress and interferon signalling-mediated apoptosis contributes to pleiotropic anticancer responses induced by targeting NGLY1. British Journal of Cancer, 2018, 119, 1538-1551.	6.4	17
17	Identification of a unique Ca2+-binding site in rat acid-sensing ion channel 3. Nature Communications, 2018, 9, 2082.	12.8	24
18	Analogues of Arylamide Phenylpiperazine Ligands To Investigate the Factors Influencing D3 Dopamine Receptor Bitropic Binding and Receptor Subtype Selectivity. ACS Chemical Neuroscience, 2018, 9, 2972-2983.	3.5	23

Jin Liu

#	Article	IF	CITATIONS
19	Cullin neddylation may allosterically tune polyubiquitin chain length and topology. Biochemical Journal, 2017, 474, 781-795.	3.7	8
20	Does Cas9-Catalyzed DNA Cleavage Generate Blunt Ends or Staggered Ends? Insight from Molecular Dynamic Simulations. Biophysical Journal, 2017, 112, 48a.	0.5	0
21	Structure and Dynamics of Cas9 HNH Domain Catalytic State. Scientific Reports, 2017, 7, 17271.	3.3	45
22	Energetic redistribution in allostery to execute protein function. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7480-7482.	7.1	41
23	Allostery: An Overview of Its History, Concepts, Methods, and Applications. PLoS Computational Biology, 2016, 12, e1004966.	3.2	194
24	Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations. Scientific Reports, 2016, 6, 37584.	3.3	105
25	Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery. PLoS Computational Biology, 2016, 12, e1004893.	3.2	32
26	Dynamic binding mode of a Synaptotagmin-1–SNARE complex in solution. Nature Structural and Molecular Biology, 2015, 22, 555-564.	8.2	129
27	Identifying Key Residues for Protein Allostery through Rigid Residue Scan. Journal of Physical Chemistry A, 2015, 119, 1689-1700.	2.5	27
28	Principles of Allosteric Interactions in Cell Signaling. Journal of the American Chemical Society, 2014, 136, 17692-17701.	13.7	127
29	The role of allostery in the ubiquitin–proteasome system. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 89-97.	5.2	28
30	Identifying Cytochrome P450 Functional Networks and Their Allosteric Regulatory Elements. PLoS ONE, 2013, 8, e81980.	2.5	27
31	2D SMARTCyp Reactivity-Based Site of Metabolism Prediction for Major Drug-Metabolizing Cytochrome P450 Enzymes. Journal of Chemical Information and Modeling, 2012, 52, 1698-1712.	5.4	30
32	Quantitative Predictions of Binding Free Energy Changes in Drug-Resistant Influenza Neuraminidase. PLoS Computational Biology, 2012, 8, e1002665.	3.2	16
33	Molecular Dynamics Simulations Reveal Distinct Conformational Changes of Three Cullins in Cullin-Ring E3 Ubiquitin Ligases. Biophysical Journal, 2011, 100, 310a.	0.5	0
34	Flexible Cullins in Cullin-RING E3 Ligases Allosterically Regulate Ubiquitination. Journal of Biological Chemistry, 2011, 286, 40934-40942.	3.4	47
35	Conformational Control of Ubiquitination in the Cullin-Ring E3 Ligase Machinery. Biophysical Journal, 2010, 98, 26a-27a.	0.5	0
36	Rbx1 Flexible Linker Facilitates Cullin-RING Ligase Function BeforeÂNeddylation and After Deneddylation. Biophysical Journal, 2010, 99, 736-744.	0.5	27

Jin Liu

#	Article	IF	CITATIONS
37	Molecular Dynamics Reveal the Essential Role of Linker Motions in the Function of Cullin–RING E3 Ligases. Journal of Molecular Biology, 2010, 396, 1508-1523.	4.2	36
38	The Mechanism of Ubiquitination in the Cullin-RING E3 Ligase Machinery: Conformational Control of Substrate Orientation. PLoS Computational Biology, 2009, 5, e1000527.	3.2	52
39	Searching For the Hinge of E3 Ubiquitin Ligase Machinery with MD Simulations. Biophysical Journal, 2009, 96, 365a.	0.5	0
40	Surface complexes of phthalic acid at the hematite/water interface. Journal of Colloid and Interface Science, 2007, 307, 124-134.	9.4	63
41	"Similarity Trap―in Protein-Protein Interactions Could Be Carcinogenic: Simulations of p53 Core Domain Complexed with 53BP1 and BRCA1 BRCT Domains. Structure, 2006, 14, 1811-1821.	3.3	16
42	Study of Singlet and Triplet 2,6-Difluorophenylnitrene by Time-Resolved Infrared Spectroscopy. Journal of Physical Chemistry A, 2005, 109, 2816-2821.	2.5	17
43	The Reaction of Triplet Nitrenes with Oxygen:  A Computational Study. Organic Letters, 2005, 7, 549-552.	4.6	38
44	A Comparison of Acetyl- and Methoxycarbonylnitrenes by Computational Methods and a Laser Flash Photolysis Study of Benzoylnitrene. Journal of Organic Chemistry, 2004, 69, 8583-8593.	3.2	84