Prescott L Deininger

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/2906152/publications.pdf
Version: 2024-02-01

\square 1 DNA sequence and expression of the B95-8 Epsteinâ€"Barr virus genome. Nature, 1984, 310, $207-211$.
27.8

2,339

2 Alu repeats and human genomic diversity. Nature Reviews Genetics, 2002, 3, 370-379.
16.3

1,245
$3 \quad$ Alu Repeats and Human Disease. Molecular Genetics and Metabolism, 1999, 67, 183-193.
1.1

825

4 Base sequence studies of 300 nucleotide renatured repeated human DNA clones. Journal of Molecular Biology, 1981, 151, 17-33.

Random subcloning of sonicated DNA: Application to shotgun DNA sequence analysis. Analytical
Biochemistry, 1983, 129, 216-223.
2.4
$6 \quad$ Alu elements: know the SINEs. Genome Biology, 2011, 12, 236.
9.6

465

7 The Human LINE-1 Retrotransposon Creates DNA Double-strand Breaks. Journal of Molecular Biology,
$7 \quad$ The Human LiNE-1 Retrot
4.2

431

8 Mobile elements and mammalian genome evolution. Current Opinion in Genetics and Development, 2003, 13, 651-658.

Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear
hair-cell function. Nature Genetics, 2002, 30, 277-284.

Partial nucleotide sequence of the 300-nucleotide interspersed repeated human DNA sequences.
$10 \quad$ Nature, 1980, 284, 372-374.
27.8

351

11 <i>Alu</i>Insertion Polymorphisms and Human Evolution: Evidence for a Larger Population Size
inâ€\%Africa. Genome Research, 1997, 7, 1061-1071.

12 Mammalian Retroelements. Genome Research, 2002, 12, 1455-1465.
5.5

309

13 Evolution of the master Alu gene(s). Journal of Molecular Evolution, 1991, 33, 311-320.
1.8

287

14 Master genes in mammalian repetitive DNA amplification. Trends in Genetics, 1992, 8, 307-311.
6.7

287

15 Sequence organization of the human genome. Cell, 1975, 6, 345-358.
28.9

285

Mammalian non-LTR retrotransposons: For better or worse, in sickness and in health. Genome
Research, 2008, 18, 343-358.
5.5

285Inviting instability: Transposable elements, double-strand breaks, and the maintenance of genome
17 integrity. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 616,Receptor-dependent Transcriptional Enhancers. Journal of Biological Chemistry, 1995, 270, 22777-22782.
Genetic variation of recent Alu insertions in human populations. Journal of Molecular Evolution, 1996, 42, 22-29.

Structure and variability of recently inserted Alu family members. Nucleic Acids Research, 1990, 18,
6793-6798.
29 LINE-1 RNA14.5180
30 The recent evolution of mammalian repetitive DNA elements. Trends in Genetics, 1986, 2, 76-80.6.716631 All yâ€ ${ }^{T M}$ all need to know â€~bout retroelements in cancer. Seminars in Cancer Biology, 2010, 20, $200-210$.9.6166
Large-scale analysis of the Alu Ya 5 and Yb 8 subfamilies and their contribution to human genomic4.2152diversity. Journal of Molecular Biology, 2001, 311, 17-40.Emergence of primate genes by retrotransposon-mediated sequence transduction. Proceedings of theNational Academy of Sciences of the United States of America, 2006, 103, 17608-17613.
39 An electron microscope study of the DNA sequer Molecular Biology, 1976, 106, 773-790.
40 Evolution of Retroposons. , 1993, , 157-196.

41	Amplification dynamics of human-specific (HS) alu family members. Nucleic Acids Research, 1991, 19, 3619-3623.	14.5	120
42	LINE dancing in the human genome: transposable elements and disease. Genome Medicine, 2009, 1, 97.	8.2	118
43	Renaturation rate studies of a single family of interspersed repeated sequences in human deoxyribonucleic acid. Biochemistry, 1981, 20, 3003-3010.	2.5	110
44	Potential Gene Conversion and Source Genes for Recently Integrated Alu Elements. Genome Research, 2000, 10, 1485-1495.	5.5	108
45	Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes. PLoS ONE, 2016, 11, e0151367.	2.5	107
46	Dispersion and Insertion Polymorphism in Two Small Subfamilies of Recently Amplified HumanAluRepeats. Journal of Molecular Biology, 1995, 247, 418-427.	4.2	105
47	Integration site preferences of the Alu family and similar repetitive DNA sequences. Nucleic Acids Research, 1985, 13, 8939-8954.	14.5	104
48	Alu elements: an intrinsic source of human genome instability. Current Opinion in Virology, 2013, 3, 639-645.	5.4	95
49	ERCC1/XPF limits L1 retrotransposition. DNA Repair, 2008, 7, 983-989.	2.8	90

```
55 8-Hydroxy-2â€2-deoxyguanosine (8-OH-dG) as a potential survival biomarker in patients with nonsmall-cell
    lung cancer. Cancer, 2007, 109, 574-580.

A second major class of Alu family repeated DNA sequences in a primate genome. Nucleic Acids Research, 1983, 11, 7595-7610.
14.5

76Nucleotide sequence and genetic organization of the polyoma late region: Features common to the63 A study of the evolution of repeated DNA sequences in primates and the existence of a new class ofrepetitive sequences in primates. Journal of Molecular Biology, 1979, 127, 437-460.
64 Shared Protein Components of SINE RNPs. Journal of Molecular Biology, 2002, 321, 423-432.4.2
65 Nickel Stimulates L1 Retrotransposition by a Post-transcriptional Mechanism. Journal of Molecular
Biology, 2005, 354, 246-257.
59Novel variant of the P2X2 ATP receptor from the guinea pig organ of Corti. Hearing Research, 1998, 121,62-70.2.058
Polymorphic human specific <i>Alu</i> insertions as markers for human identification.
Electrophoresis, 1995, 16, 1596-1601.

Identification and analysis of a â€ youngâ€ \(€^{\text {TM }}\) polymorphic Alu element. Biochimica Et Biophysica Acta Gene
2.4

Analysis of CAG Repeat of the Machado-Joseph Gene in Human, Chimpanzee and Monkey Populations: A
75 Variant Nucleotide is Associated with the Number of CAG Repeats. Human Molecular Genetics, 1996, 5,
2.9

42
207-213.

76 AluY insertion (IVS4-52ins316alu) in the glycerol kinase gene from an individual with benign glycerol
2.5

42 kinase deficiency. Human Mutation, 2000, 15, 316-323.

77 Jerzy Jurka â€" 1950â€"2014. Mobile DNA, 2015, 6, 1.
3.6

42

78 Sequence diversity and chromosomal distribution of â€œyoungâ€•Alu repeats. Gene, 1995, 163, 273-278.
2.2

40
```

79 A dimer satellite sequence in bonnet monkey DNA consists of distinct monomer subunits. Journal of

```

Molecular Biology, 1980, 136, 151-167.
\(4.2 \quad 39\)

80 Recent Amplification of Rat ID Sequences. Journal of Molecular Biology, 1996, 261, 322-327.
4.2

39

81 Alu distribution and mutation types of cancer genes. BMC Genomics, 2011, 12, 157.
2.8

39

82 The aging clock and circadian control of metabolism and genome stability. Frontiers in Genetics, 2014, 5, 455 .

83 Molecular cloning: A laboratory manual. Analytical Biochemistry, 1990, 186, 182-183.
\(2.4 \quad 36\)

84 Temporal changes in gene expression following cryogenic rat brain injury. Molecular Brain Research, 1998, 55, 9-19.
2.3

36

HPV 5 and 8 E6 expression reduces ATM protein levels and attenuates LINE-1 retrotransposition.
85 Virology, 2013, 443, 69-79.
2.4

35

Enhanced evolutionary PCR using oligonucleotides with inosine at the 3â€2-terminus. Nucleic Acids Research, 1991, 19, 5081-5081.
14.5

33

Sequencing, identification and mapping of primed Ll elements (SIMPLE) reveals significant variation in
full length L1 elements between individuals. BMC Genomics, 2015, 16, 220.
2.8

33

Transcription and processing of the rodent ID repeat family in germline and somatic cells. Nucleic
Acids Research, 1995, 23, 2245-2251.

100 Characterization of pre-insertion loci of de novo L1 insertions. Gene, 2007, 390, 190-198. ..... 2.2
101 A consensus Alu repeat probe for physical mapping. Genetic Analysis, Techniques and Applications, ..... 1.5 ..... 27
DNA sequences of Alu elements indicate a recent replacement of the human autosomal genetic
102 complement.. Proceedings of the National Academy of Sciences of the United States of America, 1996, ..... 7.1 ..... 27 93, 4360-4364.103 Nucleotide sequence and structure of integrated bovine leukemia virus long terminal repeats.2.4
Virology, 1985, 141, 162-166.
25103
104 [16] Evolutionary analyses of repetitive DNA sequences. Methods in Enzymology, 1993, 224, 213-232. ..... 1.0 ..... 25
105 Identification of a human specificAlu insertion in the factor XIIIB gene. Genetica, 1994, 94, 1-8. ..... 1.1 ..... 25
Phylogenetic Analysis of the Friedreich Ataxia GAA Trinucleotide Repeat. Journal of Molecular1.824
107 Frontiers in Genetics, 2015, 6, 358.2.324
109 Potential for Retroposition by Old Alu Subfamilies. Journal of Molecular Evolution, 2003, 56, 658-664. 22
110 Regulation of rodent myelin proteolipid protein gene expression. Neuroscience Letters, 1992, 137, 56-60. 2.1

111 Regions of the polyoma genome coding for T antigens. Nucleic Acids Research, 1979, 7, 2275-2288. 20

112 The role and amplification of the HS Alu subfamily founder gene. Journal of Molecular Evolution,
1.8

20
Near-IR single fluorophore quenching system based on phthalocyanine (Pc) aggregation and its
application for monitoring inhibitor/activator action on a therapeutic target: L1-EN. Analyst, The, 2011,
\(136,1103\).

114 Alu elements and DNA double-strand break repair. Mobile Genetic Elements, 2015, 5, 81-85.
1.8

18
115 The USH1C 216Gâ†'A mutation and the 9-repeat VNTR(t,t) allele are in complete linkage disequilibrium in the Acadian population. Human Genetics, 2002, 110, 95-97.
3.8
17116 Worldwide Genetic Variation at the 3â \(\epsilon^{2}\) ấŁUTR Region of the<i>LDLR</i>Gene: Possible Influence of NaturalSelection. Annals of Human Genetics, 2005, 69, 389-400.
\(0.8 \quad 17\)
117 Tandem insertions of Alu elements. Cytogenetic and Genome Research, 2005, 108, 58-62. ..... 1.1 ..... 16
118 Cross-Talk-Free Dual-Color Fluorescence Cross-Correlation Spectroscopy for the Study of Enzyme Activity. Analytical Chemistry, 2010, 82, 1401-1410.
119 miRNA-Mediated Relationships between Cis-SNP Genotypes and Transcript Intensities in Lymphocyte Cell
Lines. PLoS ONE, 2012, 7, e31429. ..... 15
2.5120 [41] Full-Length cDNA clones: Vector-primed cDNA synthesis. Methods in Enzymology, 1987, 152, 371-389.1.014
In vivotranscription of a cloned prosimian primate SINE sequence. Nucleic Acids Research, 1989, 17, ..... 14
8669-8682.1.114Identification and characterization of two polymorphic Ya5 Alu repeats. Mutation Research -Mutation Research Genomics, 1997, 382, 5-11.
            84-91.
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & Citations \\
\hline 127 & Comparative analysis on the expression of Ll loci using various RNA-Seq preparations. Mobile DNA, 2020, 11, 2. & 3.6 & 12 \\
\hline 128 & Organ-, sex-Âand age-dependent patterns of endogenous L1 mRNA expression at a single locus resolution. Nucleic Acids Research, 2021, 49, 5813-5831. & 14.5 & 12 \\
\hline 129 & A mutation increasing the size of the polyoma virion proteins, VP2 and VP3. Virology, 1981, 109, 35-46. & 2.4 & 11 \\
\hline 130 & An in vivo assay for measuring the recombination potential between DNA sequences in mammalian cells. Analytical Biochemistry, 1992, 205, 83-89. & 2.4 & 11 \\
\hline 131 & Characterization and population diversity of interspersed repeat sequence variants (IRS-morphs). Genome, 1996, 39, 688-696. & 2.0 & 11 \\
\hline 132 & Comparative studies of the CAG repeats in the spinocerebellar ataxia type 1 (SCA1) gene. , 1997, 74, 488-493. & & 11 \\
\hline 133 & Alu-linked hairpins efficiently mediate RNA interference with less toxicity than do H 1 -expressed short hairpin RNAs. Analytical Biochemistry, 2006, 349, 41-48. & 2.4 & 11 \\
\hline 134 & Detection of LINE-1 RNAs by Northern Blot. Methods in Molecular Biology, 2016, 1400, 223-236. & 0.9 & 11 \\
\hline 135 & Characterization and Phylogenetic Significance of a Repetitive DNA Sequence from Whooping Cranes (Grus americana). Auk, 1992, 109, 73-79. & 1.4 & 9 \\
\hline 136 & Recent B2 Element Insertions in the Mouse Genome. DNA Sequence, 1998, 8, 343-348. & 0.7 & 9 \\
\hline 137 & RNA Next-Generation Sequencing and a Bioinformatics Pipeline to Identify Expressed LINE-1s at the Locus-Specific Level. Journal of Visualized Experiments, 2019, , . & 0.3 & 9 \\
\hline 138 & Altered DNA repair creates novel Alu/Alu repeatâ€mediated deletions. Human Mutation, 2021, 42, 600-613. & 2.5 & 9 \\
\hline 139 & Analysis of epigenetic features characteristic of L1 loci expressed in human cells. Nucleic Acids Research, 2022, 50, 1888-1907. & 14.5 & 9 \\
\hline 140 & LINE-1 and Alu retrotransposition exhibit clonal variation. Mobile DNA, 2013, 4, 16. & 3.6 & 8 \\
\hline 141 & Sequence analysis and in vitro transcription of portions of the epstein-barr virus genome. Journal of Cellular Biochemistry, 1982, 19, 267-274. & 2.6 & 7 \\
\hline 142 & Abasic sites and survival in resected patients with non-small cell lung cancer. Cancer Letters, 2007, 246, 47-53. & 7.2 & 7 \\
\hline 143 & Simultaneous analysis of multiple gene expression patterns as a function of development, injury or senescence. Brain Research Protocols, 1998, 3, 1-6. & 1.6 & 6 \\
\hline 144 & Breaking the computational barrier: a divide-conquer and aggregate based approach for Alu insertion site characterisation. International Journal of Computational Biology and Drug Design, 2009, 2, 302. & 0.3 & 6 \\
\hline
\end{tabular}
145 Inferring the expression variability of human transposable element-derived exons by linear model
analysis of deep RNA sequencing data. BMC Cenomics, 2013, 14, 584.
\(2.8 \quad 6\)
The mouse deafness locus (dn) is associated with an inversion on chromosome 19. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1998, 1407, 257-262.
\(3.8 \quad 5\)
Long-Distance Relationships: Suppression of Repeat-Mediated Deletions. Trends in Genetics, 2018, 34,
147 572-574.\(6.7 \quad 5\)

6
148 Response. Journal of Molecular Evolution, 1997, 45, 7-8.\(1.8 \quad 3\)
149 Evolution of a Hypervariable Region of the Low Density Lipoprotein Receptor (LDLR) Gene in Humans ..... 1.1 and other Hominoids. Genetica, 2004, 121, 187-193.
151 Alu Elements. , 2006, , 21-34. ..... 3A critical examination of possible fractionations of human DNA according to base composition.
153 The rat thymidine kinase gene 5 â \(€^{2}\) region: evolution of a promoter. DNA Sequence, 1991, 2, \(129-131\). ..... 0.7 ..... 2Structure and variability of recently inserted Alu family members. Nucleic Acids Research, 1991, 19,698-698.
14.5 ..... 2
155 Evolution of B2 repeats: the muroid explosion. Genetica, 1997, 99, 1-13. ..... 1.115\(1.7 \quad 2\)
152 Nucleic Acids and Protein Synthesis, 1978, 520, 21-37.
3.63
Transcription coupled repair and biased insertion of human retrotransposon Ll in transcribed genes. \(150 \quad\) Mobile DNA, 2017, 8, 18.```

