
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2904428/publications.pdf Version: 2024-02-01

XINHUA LIN

#	Article	IF	CITATIONS
1	The rise of developmental biology in China. Development Growth and Differentiation, 2022, 64, 106-115.	0.6	3
2	Modeling Human Thyroid Development by Fetal Tissueâ€Derived Organoid Culture. Advanced Science, 2022, 9, e2105568.	5.6	14
3	Critical role of Znhit1 for postnatal heart function and vacuolar cardiomyopathy. JCI Insight, 2022, 7, .	2.3	4
4	Modeling hepatoblastoma development with human fetal liver organoids reveals YAP1 activation is sufficient for tumorigenesis. Protein and Cell, 2022, 13, 683-688.	4.8	18
5	Znhit1 controls meiotic initiation in male germ cells by coordinating with Stra8 to activate meiotic gene expression. Developmental Cell, 2022, 57, 901-913.e4.	3.1	16
6	Znhit1 Regulates p21 ^{Cip1} to Control Mouse Lens Differentiation. , 2022, 63, 18.		4
7	EMC3 Is Essential for Retinal Organization and Neurogenesis During Mouse Retinal Development. , 2021, 62, 31.		9
8	Emc3 maintains intestinal homeostasis by preserving secretory lineages. Mucosal Immunology, 2021, 14, 873-886.	2.7	9
9	The SRCAP chromatin remodeling complex promotes oxidative metabolism during prenatal heart development. Development (Cambridge), 2021, 148, .	1.2	17
10	SIRT2â€knockdown rescues GARSâ€induced Charcotâ€Marieâ€Tooth neuropathy. Aging Cell, 2021, 20, e13391.	3.0	8
11	Defense of COVID-19 by Human Organoids. Phenomics, 2021, 1, 113-128.	0.9	8
12	An MST4â€p <i>β</i> â€Catenin ^{Thr40} Signaling Axis Controls Intestinal Stem Cell and Tumorigenesis. Advanced Science, 2021, 8, e2004850.	5.6	16
13	Chromatin remodeler Znhit1 preserves hematopoietic stem cell quiescence by determining the accessibility of distal enhancers. Leukemia, 2020, 34, 3348-3358.	3.3	16
14	Selective Inhibition of STRN3-Containing PP2A Phosphatase Restores Hippo Tumor-Suppressor Activity in Gastric Cancer. Cancer Cell, 2020, 38, 115-128.e9.	7.7	70
15	UHRF1-repressed 5'-hydroxymethylcytosine is essential for the male meiotic prophase I. Cell Death and Disease, 2020, 11, 142.	2.7	9
16	Generation of liver bipotential organoids with a small-molecule cocktail. Journal of Molecular Cell Biology, 2020, 12, 618-629.	1.5	13
17	Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids. Protein and Cell, 2020, 11, 771-775.	4.8	313
18	Gene manipulation in liver ductal organoids by optimized recombinant adeno-associated virus vectors. Journal of Biological Chemistry, 2019, 294, 14096-14104.	1.6	22

#	Article	IF	CITATIONS
19	Znhit1 controls intestinal stem cell maintenance by regulating H2A.Z incorporation. Nature Communications, 2019, 10, 1071.	5.8	25
20	Multiple roles of epithelial heparan sulfate in stomach morphogenesis. Journal of Cell Science, 2018, 131, .	1.2	3
21	RNF8 and SCML2 cooperate to regulate ubiquitination and H3K27 acetylation for escape gene activation on the sex chromosomes. PLoS Genetics, 2018, 14, e1007233.	1.5	45
22	Tankyrase regulates apoptosis by activating JNK signaling in Drosophila. Biochemical and Biophysical Research Communications, 2018, 503, 2234-2239.	1.0	11
23	The deubiquitinating enzyme Usp5 regulates Notch and <scp>RTK</scp> signaling during <i>Drosophila</i> eye development. FEBS Letters, 2017, 591, 875-888.	1.3	14
24	Wnt signaling promotes hindgut fate commitment through regulating multi-lineage genes during hESC differentiation. Cellular Signalling, 2017, 29, 12-22.	1.7	10
25	EMC3 coordinates surfactant protein and lipid homeostasis required for respiration. Journal of Clinical Investigation, 2017, 127, 4314-4325.	3.9	48
26	Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development. PLoS Genetics, 2017, 13, e1006992.	1.5	28
27	Drosophila VAMP7 regulates Wingless intracellular trafficking. PLoS ONE, 2017, 12, e0186938.	1.1	7
28	Sumoylation Stabilizes Smoothened to Promote Hedgehog Signaling. Developmental Cell, 2016, 39, 385-387.	3.1	3
29	Genome-wide RNAi Screen Identifies Networks Involved in Intestinal Stem Cell Regulation in Drosophila. Cell Reports, 2015, 10, 1226-1238.	2.9	88
30	Windpipe Controls Drosophila Intestinal Homeostasis by Regulating JAK/STAT Pathway via Promoting Receptor Endocytosis and Lysosomal Degradation. PLoS Genetics, 2015, 11, e1005180.	1.5	36
31	Drosophila p24 and Sec22 regulate Wingless trafficking in the early secretory pathway. Biochemical and Biophysical Research Communications, 2015, 463, 483-489.	1.0	27
32	Drosophila USP5 Controls the Activation of Apoptosis and the Jun N-Terminal Kinase Pathway during Eye Development. PLoS ONE, 2014, 9, e92250.	1.1	17
33	Drosophila heparan sulfate 3-O sulfotransferase B Null Mutant Is Viable and Exhibits No Defects in Notch Signaling. Journal of Genetics and Genomics, 2014, 41, 369-378.	1.7	6
34	The Drosophila tankyrase regulates Wg signaling depending on the concentration of Daxin. Cellular Signalling, 2014, 26, 1717-1724.	1.7	21
35	Retromer Promotes Immune Quiescence by Suppressing SpÃæleâ€Toll Pathway in <i>Drosophila</i> . Journal of Cellular Physiology, 2014, 229, 512-520.	2.0	9
36	The Sterile 20-Like Kinase Tao Controls Tissue Homeostasis by Regulating the Hippo Pathway in Drosophila Adult Midgut. Journal of Genetics and Genomics, 2014, 41, 429-438.	1.7	16

#	Article	IF	CITATIONS
37	Hs3st-A and Hs3st-B regulate intestinal homeostasis in Drosophila adult midgut. Cellular Signalling, 2014, 26, 2317-2325.	1.7	12
38	dBrms1 Acts as a Positive Regulator of Notch Signaling in Drosophila Wing. Journal of Genetics and Genomics, 2014, 41, 317-325.	1.7	5
39	Drosophila Perlecan Regulates Intestinal Stem Cell Activity via Cell-Matrix Attachment. Stem Cell Reports, 2014, 2, 761-769.	2.3	46
40	Debra-Mediated Ci Degradation Controls Tissue Homeostasis in Drosophila Adult Midgut. Stem Cell Reports, 2014, 2, 135-144.	2.3	25
41	Hyperplastic discs differentially regulates the transcriptional outputs of hedgehog signaling. Mechanisms of Development, 2014, 133, 117-125.	1.7	15
42	Drosophila miR-932 modulates hedgehog signaling by targeting its co-receptor Brother of ihog. Developmental Biology, 2013, 377, 166-176.	0.9	10
43	Trachea-Derived Dpp Controls Adult Midgut Homeostasis in Drosophila. Developmental Cell, 2013, 24, 133-143.	3.1	113
44	Drosophila glypicans Dally and Dally-like are essential regulators for JAK/STAT signaling and Unpaired distribution in eye development. Developmental Biology, 2013, 375, 23-32.	0.9	32
45	Roles of N-glycosylation and lipidation in Wg secretion and signaling. Developmental Biology, 2012, 364, 32-41.	0.9	61
46	Retromer regulates apical–basal polarity through recycling crumbs. Developmental Biology, 2011, 360, 87-95.	0.9	62
47	Sulfated is a negative feedback regulator of wingless in <i>Drosophila</i> . Developmental Dynamics, 2011, 240, 640-648.	0.8	23
48	SNX3 controls Wingless/Wnt secretion through regulating retromer-dependent recycling of Wntless. Cell Research, 2011, 21, 1677-1690.	5.7	112
49	The cell-surface proteins Dally-like and Ihog differentially regulate Hedgehog signaling strength and range during development. Development (Cambridge), 2010, 137, 2033-2044.	1.2	97
50	Shaping Morphogen Gradients by Proteoglycans. Cold Spring Harbor Perspectives in Biology, 2009, 1, a002493-a002493.	2.3	299
51	An essential glycobiology resource for developmental biologists. Development (Cambridge), 2009, 136, 4072-4073.	1.2	0
52	The Core Protein of Glypican Dally-Like Determines Its Biphasic Activity in Wingless Morphogen Signaling. Developmental Cell, 2009, 17, 470-481.	3.1	96
53	Opposing roles for glypicans in Hedgehog signalling. Nature Cell Biology, 2008, 10, 761-763.	4.6	25
54	The Retromer Complex Influences Wnt Secretion by Recycling Wntless from Endosomes to the Trans-Golgi Network. Developmental Cell, 2008, 14, 120-131.	3.1	275

#	Article	IF	CITATIONS
55	Drosophila glypican Dally-like acts in FGF-receiving cells to modulate FGF signaling during tracheal morphogenesis. Developmental Biology, 2007, 312, 203-216.	0.9	50
56	Drosophila glypicans Dally and Dally-like shape the extracellular Wingless morphogen gradient in the wing disc. Development (Cambridge), 2005, 132, 667-679.	1.2	190
57	Drosophila glypicans control the cell-to-cell movement of Hedgehog by a dynamin-independent process. Development (Cambridge), 2004, 131, 601-611.	1.2	222
58	Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation. Development (Cambridge), 2004, 131, 1563-1575.	1.2	206
59	Functions of heparan sulfate proteoglycans in cell signaling during development. Development (Cambridge), 2004, 131, 6009-6021.	1.2	569
60	Drosophila Dpp Morphogen Movement Is Independent of Dynamin-Mediated Endocytosis but Regulated by the Glypican Members of Heparan Sulfate Proteoglycans. Cell, 2004, 119, 231-244.	13.5	275
61	Developmental roles of heparan sulfate proteoglycans in Drosophila. Glycoconjugate Journal, 2002, 19, 363-368.	1.4	58
62	<i>pygopus</i> encodes a nuclear protein essential for Wingless/Wnt signaling. Development (Cambridge), 2002, 129, 4089-4101.	1.2	155
63	pygopus Encodes a nuclear protein essential for wingless/Wnt signaling. Development (Cambridge), 2002, 129, 4089-101.	1.2	80
64	Role of heparan sulfate proteoglycans in cell–cell signaling in Drosophila. Matrix Biology, 2000, 19, 303-307.	1.5	97
65	Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature, 1999, 400, 281-284.	13.7	459