Michael W Mather

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2903591/publications.pdf

Version: 2024-02-01

47 papers

7,170 citations

201674 27 h-index 206112 48 g-index

55 all docs 55 docs citations

55 times ranked 6997 citing authors

#	Article	IF	CITATIONS
1	Atypical Molecular Basis for Drug Resistance to Mitochondrial Function Inhibitors in Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	7
2	Divergent Mitochondrial Ribosomes in Unicellular Parasitic Protozoans. Trends in Parasitology, 2020, 36, 318-321.	3.3	6
3	Genetic ablation of the mitoribosome in the malaria parasite Plasmodium falciparum sensitizes it to antimalarials that target mitochondrial functions. Journal of Biological Chemistry, 2020, 295, 7235-7248.	3.4	23
4	para-Aminobenzoate Synthesis versus Salvage in Malaria Parasites. Trends in Parasitology, 2019, 35, 176-178.	3.3	6
5	Mitochondrial type II NADH dehydrogenase of Plasmodium falciparum (PfNDH2) is dispensable in the asexual blood stages. PLoS ONE, 2019, 14, e0214023.	2.5	29
6	The mitochondrial ribosomal protein L13 is critical for the structural and functional integrity of the mitochondrion in Plasmodium falciparum. Journal of Biological Chemistry, 2018, 293, 8128-8137.	3.4	50
7	Novel Defense Peptides from Platelets Kill Malaria Parasites. Trends in Parasitology, 2018, 34, 729-731.	3.3	6
8	Alkoxycarbonate Ester Prodrugs of Preclinical Drug Candidate ELQ-300 for Prophylaxis and Treatment of Malaria. ACS Infectious Diseases, 2017, 3, 728-735.	3.8	38
9	Functional Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes. Cell, 2017, 170, 260-272.e8.	28.9	471
10	Caged Garcinia Xanthones, a Novel Chemical Scaffold with Potent Antimalarial Activity. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	15
11	+Targeting Mitochondrial Functions as Antimalarial Regime, What Is Next?. Current Clinical Microbiology Reports, 2017, 4, 175-191.	3.4	12
12	Characterization of a Plasmodium falciparum Orthologue of the Yeast Ubiquinone-Binding Protein, Coq10p. PLoS ONE, 2016, 11, e0152197.	2.5	6
13	ELQ-300 Prodrugs for Enhanced Delivery and Single-Dose Cure of Malaria. Antimicrobial Agents and Chemotherapy, 2015, 59, 5555-5560.	3.2	62
14	Inhibition of Cytochrome bc 1 as a Strategy for Single-Dose, Multi-Stage Antimalarial Therapy. American Journal of Tropical Medicine and Hygiene, 2015, 92, 1195-1201.	1.4	34
15	Genetic Investigation of Tricarboxylic Acid Metabolism during the Plasmodium falciparum Life Cycle. Cell Reports, 2015, 11, 164-174.	6.4	134
16	The Heme Biosynthesis Pathway Is Essential for Plasmodium falciparum Development in Mosquito Stage but Not in Blood Stages. Journal of Biological Chemistry, 2014, 289, 34827-34837.	3.4	133
17	Discovery, Synthesis, and Optimization of Antimalarial $4(1 < i > H < /i >)$ -Quinolone-3-Diarylethers. Journal of Medicinal Chemistry, 2014, 57, 3818-3834.	6.4	100
18	Quinolone-3-Diarylethers: A New Class of Antimalarial Drug. Science Translational Medicine, 2013, 5, 177ra37.	12.4	187

#	Article	IF	Citations
19	Mitochondrial RNA polymerase is an essential enzyme in erythrocytic stages of Plasmodium falciparum. Molecular and Biochemical Parasitology, 2012, 185, 48-51.	1.1	10
20	Variation among Plasmodium falciparum Strains in Their Reliance on Mitochondrial Electron Transport Chain Function. Eukaryotic Cell, 2011, 10, 1053-1061.	3.4	59
21	Comparative genomics of the pathogenic ciliate Ichthyophthirius multifiliis, its free-living relatives and a host species provide insights into adoption of a parasitic lifestyle and prospects for disease control. Genome Biology, 2011, 12, R100.	9.6	102
22	Yeast dihydroorotate dehydrogenase as a new selectable marker for Plasmodium falciparum transfection. Molecular and Biochemical Parasitology, 2011, 177, 29-34.	1,1	94
23	ATP Synthase Complex of Plasmodium falciparum. Journal of Biological Chemistry, 2011, 286, 41312-41322.	3.4	69
24	Hemozoin-free Plasmodium falciparum mitochondria for physiological and drug susceptibility studies. Molecular and Biochemical Parasitology, 2010, 174, 150-153.	1.1	27
25	Branched tricarboxylic acid metabolism in Plasmodium falciparum. Nature, 2010, 466, 774-778.	27.8	111
26	Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila. PLoS Biology, 2010, 8, e1000418.	5 . 6	72
27	Mitochondrial Evolution and Functions in Malaria Parasites. Annual Review of Microbiology, 2009, 63, 249-267.	7.3	207
28	Mitochondria in malaria and related parasites: ancient, diverse and streamlined. Journal of Bioenergetics and Biomembranes, 2008, 40, 425-33.	2.3	47
29	The validity of mitochondrial dehydrogenases as antimalarial drug targets. Trends in Parasitology, 2008, 24, 8-9.	3.3	25
30	Mitochondrial Drug Targets in Apicomplexan Parasites. Current Drug Targets, 2007, 8, 49-60.	2.1	100
31	Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature, 2007, 446, 88-91.	27.8	441
32	Uncovering the Molecular Mode of Action of the Antimalarial Drug Atovaquone Using a Bacterial System. Journal of Biological Chemistry, 2005, 280, 27458-27465.	3.4	83
33	The inhibition of calcium signaling in T lymphocytes from old mice results from enhanced activation of the mitochondrial permeability transition pore. Mechanisms of Ageing and Development, 2002, 123, 707-724.	4.6	34
34	Genome sequence of the human malaria parasite Plasmodium falciparum. Nature, 2002, 419, 498-511.	27.8	3,881
35	Atovaquone resistance in malaria parasites. Drug Resistance Updates, 2000, 3, 283-287.	14.4	69
36	Intrinsic uncoupling of cytochromecoxidase may cause the maternally inherited mitochondrial diseases MELAS and LHON. FEBS Letters, 1998, 433, 93-97.	2.8	20

#	Article	IF	CITATIONS
37	Flexibility of the Neck Region of the Rieske Iron-Sulfur Protein Is Functionally Important in the Cytochrome bc 1Complex. Journal of Biological Chemistry, 1998, 273, 27953-27959.	3.4	94
38	The Involvement of Serine 175 and Alanine 185 of Cytochromeb of Rhodobacter sphaeroides Cytochromebc 1 Complex in Interaction with Iron-Sulfur Protein. Journal of Biological Chemistry, 1997, 272, 23722-23728.	3.4	19
39	The Involvement of Threonine 160 of Cytochrome b of Rhodobacter sphaeroides Cytochrome bc1 Complex in Quinone Binding and Interaction with Subunit IV. Journal of Biological Chemistry, 1995, 270, 28668-28675.	3.4	28
40	Molecular Genetic and Protein Chemical Characterization of the Cytochrome ba3 from Thermus thermophilus HB8. Journal of Biological Chemistry, 1995, 270, 20345-20358.	3.4	74
41	An enhanced broad-host-range vector for Gram-negative bacteria: Avoiding tetracycline phototoxicity during the growth of photosynthetic bacteria. Gene, 1995, 156, 85-88.	2.2	25
42	Molecular modeling studies on the proposed NaCl-induced dimerization of Chromatium vinosum high-potential iron protein. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1142, 93-98.	1.0	6
43	Cytochromecaa 3 from the thermophilic bacteriumThermus thermophilus: A member of the heme-copper oxidase superfamily. Journal of Bioenergetics and Biomembranes, 1993, 25, 103-114.	2.3	26
44	[50] Recovery and cloning of genomic DNA fragments from dried agarose gels. Methods in Enzymology, 1993, 218, 695-704.	1.0	7
45	Plasmid-associated aggregation inThermus thermophilus HB8. Plasmid, 1990, 24, 45-56.	1.4	16
46	Respiratory proteins from extremely thermophilic, aerobic bacteria. Biochimica Et Biophysica Acta - Reviews on Bioenergetics, 1986, 853, 153-185.	0.2	85
47	Activation of Pyruvate Oxidase and Interaction with Membrane Components., 1982,, 83-92.		2