
Nuno A Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2903193/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From basics to clinical: A comprehensive review on spinal cord injury. Progress in Neurobiology, 2014, 114, 25-57.	5.7	626
2	Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis. Stem Cells and Development, 2016, 25, 1073-1083.	2.1	175
3	Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration. Stem Cells International, 2015, 2015, 1-24.	2.5	135
4	The effects of peptide modified gellan gum and olfactory ensheathing glia cells on neural stem/progenitor cell fate. Biomaterials, 2012, 33, 6345-6354.	11.4	129
5	Tissue Engineering and Regenerative Medicine. International Review of Neurobiology, 2013, 108, 1-33.	2.0	107
6	Development and Characterization of a Novel Hybrid Tissue Engineering–Based Scaffold for Spinal Cord Injury Repair. Tissue Engineering - Part A, 2010, 16, 45-54.	3.1	103
7	Microglia Response and In Vivo Therapeutic Potential of Methylprednisoloneâ€Loaded Dendrimer Nanoparticles in Spinal Cord Injury. Small, 2013, 9, 738-749.	10.0	91
8	Combination of a peptide-modified gellan gum hydrogel with cell therapy in a lumbar spinal cord injury animal model. Biomaterials, 2016, 105, 38-51.	11.4	68
9	Filling the Gap: Neural Stem Cells as A Promising Therapy for Spinal Cord Injury. Pharmaceuticals, 2019, 12, 65.	3.8	64
10	The secretome of bone marrow mesenchymal stem cells-conditioned media varies with time and drives a distinct effect on mature neurons and glial cells (primary cultures). Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 668-672.	2.7	55
11	Modulation of bone marrow mesenchymal stem cell secretome byÂECM-like hydrogels. Biochimie, 2013, 95, 2314-2319.	2.6	54
12	Co-Transplantation of Adipose Tissue-Derived Stromal Cells and Olfactory Ensheathing Cells for Spinal Cord Injury Repair. Stem Cells, 2018, 36, 696-708.	3.2	48
13	Development and Characterization of a <scp>PHB</scp> â€ <scp>HV</scp> â€based 3 <scp>D</scp> Scaffold for a Tissue Engineering and Cellâ€therapy Combinatorial Approach for Spinal Cord Injury Regeneration. Macromolecular Bioscience, 2013, 13, 1576-1592.	4.1	47
14	Cell Secretome: Basic Insights and Therapeutic Opportunities for CNS Disorders. Pharmaceuticals, 2020, 13, 31.	3.8	44
15	Systemic Interleukin-4 Administration after Spinal Cord Injury Modulates Inflammation and Promotes Neuroprotection. Pharmaceuticals, 2017, 10, 83.	3.8	42
16	Unveiling the effects of the secretome of mesenchymal progenitors from the umbilical cord in different neuronal cell populations. Biochimie, 2013, 95, 2297-2303.	2.6	40
17	Development of β-TCP-Ti6Al4V structures: Driving cellular response by modulating physical and chemical properties. Materials Science and Engineering C, 2019, 98, 705-716.	7.3	30
18	Interactions between Schwann and olfactory ensheathing cells with a starch/polycaprolactone scaffold aimed at spinal cord injury repair. Journal of Biomedical Materials Research - Part A, 2012, 100A, 470-476.	4.0	28

NUNO A SILVA

#	Article	IF	CITATIONS
19	Combining neuroprotective agents: effect of riluzole and magnesium in a rat model of thoracic spinal cord injury. Spine Journal, 2016, 16, 1015-1024.	1.3	25
20	Peripheral mineralization of a 3D biodegradable tubular construct as a way to enhance guidance stabilization in spinal cord injury regeneration. Journal of Materials Science: Materials in Medicine, 2012, 23, 2821-2830.	3.6	24
21	Combining Adult Stem Cells and Olfactory Ensheathing Cells: The Secretome Effect. Stem Cells and Development, 2013, 22, 1232-1240.	2.1	24
22	45S5 BAG-Ti6Al4V structures: The influence of the design on some of the physical and chemical interactions that drive cellular response. Materials and Design, 2018, 160, 95-105.	7.0	22
23	Benefits of Spine Stabilization with Biodegradable Scaffolds in Spinal Cord Injured Rats. Tissue Engineering - Part C: Methods, 2013, 19, 101-108.	2.1	20
24	Influence of passage number on the impact of the secretome of adipose tissue stem cells on neural survival, neurodifferentiation and axonal growth. Biochimie, 2018, 155, 119-128.	2.6	20
25	Cell and Tissue Instructive Materials for Central Nervous System Repair. Advanced Functional Materials, 2020, 30, 1909083.	14.9	20
26	Hierarchical scaffolds enhance osteogenic differentiation of human Wharton's jelly derived stem cells. Biofabrication, 2015, 7, 035009.	7.1	17
27	Influence of Different ECM-Like Hydrogels on Neurite Outgrowth Induced by Adipose Tissue-Derived Stem Cells. Stem Cells International, 2017, 2017, 1-10.	2.5	17
28	Animal model for chronic massive rotator cuff tear: behavioural and histologic analysis. Knee Surgery, Sports Traumatology, Arthroscopy, 2015, 23, 608-618.	4.2	16
29	Splenic sympathetic signaling contributes to acute neutrophil infiltration of the injured spinal cord. Journal of Neuroinflammation, 2020, 17, 282.	7.2	16
30	Induction of neurite outgrowth in 3D hydrogel-based environments. Biomedical Materials (Bristol), 2015, 10, 051001.	3.3	15
31	In vitro Evaluation of ASCs and HUVECs Co-cultures in 3D Biodegradable Hydrogels on Neurite Outgrowth and Vascular Organization. Frontiers in Cell and Developmental Biology, 2020, 8, 489.	3.7	15
32	Immunomodulation as a neuroprotective strategy after spinal cord injury. Neural Regeneration Research, 2018, 13, 423.	3.0	13
33	Combinatorial therapies for spinal cord injury: strategies to induce regeneration. Neural Regeneration Research, 2019, 14, 69.	3.0	13
34	Combination of a Gellan Gum-Based Hydrogel With Cell Therapy for the Treatment of Cervical Spinal Cord Injury. Frontiers in Bioengineering and Biotechnology, 2020, 8, 984.	4.1	10
35	Levetiracetam treatment leads to functional recovery after thoracic or cervical injuries of the spinal cord. Npj Regenerative Medicine, 2021, 6, 11.	5.2	10
36	Immunomodulatory and regenerative effects of the full and fractioned adipose tissue derived stem cells secretome in spinal cord injury. Experimental Neurology, 2022, 351, 113989.	4.1	10

NUNO A SILVA

#	Article	IF	CITATIONS
37	Nanoengineered biomaterials for spinal cord regeneration. , 2019, , 167-185.		7
38	Bioengineered cell culture systems of central nervous system injury and disease. Drug Discovery Today, 2016, 21, 1456-1463.	6.4	5
39	Preclinical Assessment of Mesenchymal-Stem-Cell-Based Therapies in Spinocerebellar Ataxia Type 3. Biomedicines, 2021, 9, 1754.	3.2	5
40	Nutritional interventions for spinal cord injury: preclinical efficacy and molecular mechanisms. Nutrition Reviews, 2022, 80, 1206-1221.	5.8	4
41	Hydrogels for spinal cord injury regeneration. , 2008, , 570-594.		3
42	Citalopram Administration Does Not Promote Function or Histological Recovery after Spinal Cord Injury. International Journal of Molecular Sciences, 2020, 21, 5062.	4.1	3
43	Cell therapies for spinal cord injury regeneration. , 2020, , 157-186.		2
44	Neuroprotection in the injured spinal cord. , 2020, , 125-145.		0
45	Animal models of central nervous system disorders. , 2020, , 621-650.		Ο