Mark R Cookson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2901866/publications.pdf

Version: 2024-02-01

287 papers 43,419 citations

94 h-index ²⁴⁴⁸
197
g-index

323 all docs 323 docs citations

times ranked

323

44853 citing authors

#	Article	IF	CITATIONS
1	LRRK2 recruitment, activity, and function in organelles. FEBS Journal, 2022, 289, 6871-6890.	4.7	43
2	Coding and Noncoding Variation in <scp><i>LRRK2</i></scp> and Parkinson's Disease Risk. Movement Disorders, 2022, 37, 95-105.	3.9	14
3	Directing LRRK2 to membranes of the endolysosomal pathway triggers RAB phosphorylation and JIP4 recruitment. Neurobiology of Disease, 2022, 170, 105769.	4.4	18
4	Evaluation of Current Methods to Detect Cellular Leucine-Rich Repeat Kinase 2 (LRRK2) Kinase Activity. Journal of Parkinson's Disease, 2022, 12, 1423-1447.	2.8	8
5	<scp>DJ</scp> â€1 is not a deglycase and makes a modest contribution to cellular defense against methylglyoxal damage in neurons. Journal of Neurochemistry, 2022, 162, 245-261.	3.9	23
6	Extracellular clusterin limits the uptake of αâ€synuclein fibrils by murine and human astrocytes. Glia, 2021, 69, 681-696.	4.9	32
7	Genetic determinants of survival in progressive supranuclear palsy: a genome-wide association study. Lancet Neurology, The, 2021, 20, 107-116.	10.2	62
8	Genetic analysis of amyotrophic lateral sclerosis identifies contributing pathways and cell types. Science Advances, 2021, 7, .	10.3	59
9	Stereotaxic Intracranial Delivery of Chemicals, Proteins or Viral Vectors to Study Parkinson's Disease. Journal of Visualized Experiments, 2021, , .	0.3	O
10	CoExp: A Web Tool for the Exploitation of Co-expression Networks. Frontiers in Genetics, 2021, 12, 630187.	2.3	16
11	Preclinical modeling of chronic inhibition of the Parkinson's disease associated kinase LRRK2 reveals altered function of the endolysosomal system in vivo. Molecular Neurodegeneration, 2021, 16, 17.	10.8	29
12	Tackling neurodegenerative diseases with genomic engineering: A new stem cell initiative from the NIH. Neuron, 2021, 109, 1080-1083.	8.1	53
13	Evidence for <i>GRN</i> connecting multiple neurodegenerative diseases. Brain Communications, 2021, 3, fcab095.	3.3	24
14	Combined Knockout of Lrrk2 and Rab29 Does Not Result in Behavioral Abnormalities in vivo. Journal of Parkinson's Disease, 2021, 11, 569-584.	2.8	7
15	Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets. JAMA Neurology, 2021, 78, 464.	9.0	95
16	Generation of fourteen isogenic cell lines for Parkinson's disease-associated leucine-rich repeat kinase (LRRK2). Stem Cell Research, 2021, 53, 102354.	0.7	7
17	Investigation of Autosomal Genetic Sex Differences in Parkinson's Disease. Annals of Neurology, 2021, 90, 35-42.	5. 3	29
18	High-frequency head impact causes chronic synaptic adaptation and long-term cognitive impairment in mice. Nature Communications, 2021, 12, 2613.	12.8	29

#	Article	IF	Citations
19	Genomewide Association Studies of <scp><i>LRRK2</i></scp> Modifiers of Parkinson's Disease. Annals of Neurology, 2021, 90, 76-88.	5.3	30
20	Identification of sixteen novel candidate genes for late onset Parkinson's disease. Molecular Neurodegeneration, 2021, 16, 35.	10.8	41
21	THAP1 modulates oligodendrocyte maturation by regulating ECM degradation in lysosomes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
22	LAG3 is not expressed in human and murine neurons and does not modulate αâ€synucleinopathies. EMBO Molecular Medicine, 2021, 13, e14745.	6.9	44
23	Generation of iPSC line from a Parkinson patient with PARK7 mutation and CRISPR-edited Gibco human episomal iPSC line to mimic PARK7 mutation. Stem Cell Research, 2021, 55, 102506.	0.7	3
24	Association of Variants in the <i>SPTLC1</i> Gene With Juvenile Amyotrophic Lateral Sclerosis. JAMA Neurology, 2021, 78, 1236.	9.0	46
25	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /Ov	erlock 10 ⁻ 9.1	Tf 50 502 T 1,480
26	The commercial genetic testing landscape for Parkinson's disease. Parkinsonism and Related Disorders, 2021, 92, 107-111.	2.2	16
27	Transcriptional signatures in iPSC-derived neurons are reproducible across labs when differentiation protocols are closely matched. Stem Cell Research, 2021, 56, 102558.	0.7	2
28	RNA sequencing of whole blood reveals early alterations in immune cells and gene expression in Parkinson's disease. Nature Aging, 2021, 1, 734-747.	11.6	18
29	Transcriptome analysis of collagen Vlâ€related muscular dystrophy muscle biopsies. Annals of Clinical and Translational Neurology, 2021, 8, 2184-2198.	3.7	10
30	Mutations in LRRK2 linked to Parkinson disease sequester Rab8a to damaged lysosomes and regulate transferrin-mediated iron uptake in microglia. PLoS Biology, 2021, 19, e3001480.	5.6	48
31	Genetic modifiers of risk and age at onset in GBA associated Parkinson's disease and Lewy body dementia. Brain, 2020, 143, 234-248.	7.6	149
32	Molecular mechanism of olesoxime-mediated neuroprotection through targeting α-synuclein interaction with mitochondrial VDAC. Cellular and Molecular Life Sciences, 2020, 77, 3611-3626.	5.4	39
33	LRRK2 mediates microglial neurotoxicity via NFATc2 in rodent models of synucleinopathies. Science Translational Medicine, 2020, 12, .	12.4	49
34	LRRK2 mediates tubulation and vesicle sorting from lysosomes. Science Advances, 2020, 6, .	10.3	140
35	Divergent Effects of G2019S and R1441C LRRK2 Mutations on LRRK2 and Rab10 Phosphorylations in Mouse Tissues. Cells, 2020, 9, 2344.	4.1	34
36	Signatures of disrupted synaptic maintenance in the entorhinal cortex of both pathologyâ€free APOE4 carriers and aged APOE4 mice. Alzheimer's and Dementia, 2020, 16, e046192.	0.8	O

#	Article	IF	Citations
37	The Parkinson's Disease Protein LRRK2 Interacts with the GARP Complex to Promote Retrograde Transport to the trans-Golgi Network. Cell Reports, 2020, 31, 107614.	6.4	49
38	Can Leucineâ€Rich Repeat Kinase 2 Inhibition Benefit <i>GBA</i> –Parkinson's Disease?. Movement Disorders, 2020, 35, 721-723.	3.9	0
39	APOE4 is Associated with Differential Regional Vulnerability to Bioenergetic Deficits in Aged APOE Mice. Scientific Reports, 2020, 10, 4277.	3.3	34
40	Large-scale pathway specific polygenic risk and transcriptomic community network analysis identifies novel functional pathways in Parkinson disease. Acta Neuropathologica, 2020, 140, 341-358.	7.7	68
41	In Vitro CRISPR/Cas9-Directed Gene Editing to Model LRRK2 G2019S Parkinson's Disease in Common Marmosets. Scientific Reports, 2020, 10, 3447.	3.3	34
42	Penetrance of Parkinson's Disease in <i>LRRK2</i> p.G2019S Carriers Is Modified by a Polygenic Risk Score. Movement Disorders, 2020, 35, 774-780.	3.9	57
43	Pathways of protein synthesis and degradation in PD pathogenesis. Progress in Brain Research, 2020, 252, 217-270.	1.4	5
44	Sequential screening nominates the Parkinson's disease associated kinase LRRK2 as a regulator of Clathrin-mediated endocytosis. Neurobiology of Disease, 2020, 141, 104948.	4.4	27
45	Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2019, 18, 1091-1102.	10.2	1,414
46	Proteomics: techniques and applications in neuroscience. Journal of Neurochemistry, 2019, 151, 394-396.	3.9	4
47	The Genetic Architecture of Parkinson Disease in Spain: Characterizing Populationâ€Specific Risk, Differential Haplotype Structures, and Providing Etiologic Insight. Movement Disorders, 2019, 34, 1851-1863.	3.9	47
48	The endocytic membrane trafficking pathway plays a major role in the risk of Parkinson's disease. Movement Disorders, 2019, 34, 460-468.	3.9	66
49	<scp>DNAJC</scp> proteins and pathways to parkinsonism. FEBS Journal, 2019, 286, 3080-3094.	4.7	37
50	Transcriptome analysis of LRRK2 knock-out microglia cells reveals alterations of inflammatory- and oxidative stress-related pathways upon treatment with α-synuclein fibrils. Neurobiology of Disease, 2019, 129, 67-78.	4.4	53
51	The role of Rab GTPases in the pathobiology of Parkinson' disease. Current Opinion in Cell Biology, 2019, 59, 73-80.	5.4	37
52	Proteomics; applications in familial Parkinson's disease. Journal of Neurochemistry, 2019, 151, 446-458.	3.9	2
53	LRRK2 links genetic and sporadic Parkinson's disease. Biochemical Society Transactions, 2019, 47, 651-661.	3.4	148
54	Glial phagocytic clearance in Parkinson's disease. Molecular Neurodegeneration, 2019, 14, 16.	10.8	104

#	Article	IF	CITATIONS
55	Parkinson's disease-associated mutations in the GTPase domain of LRRK2 impair its nucleotide-dependent conformational dynamics. Journal of Biological Chemistry, 2019, 294, 5907-5913.	3.4	25
56	Assessment of APOE in atypical parkinsonism syndromes. Neurobiology of Disease, 2019, 127, 142-146.	4.4	21
57	Genetic analysis of neurodegenerative diseases in a pathology cohort. Neurobiology of Aging, 2019, 76, 214.e1-214.e9.	3.1	25
58	The role of monogenic genes in idiopathic Parkinson's disease. Neurobiology of Disease, 2019, 124, 230-239.	4.4	97
59	Differences in Stability, Activity and Mutation Effects Between Human and Mouse Leucine-Rich Repeat Kinase 2. Neurochemical Research, 2019, 44, 1446-1459.	3.3	7
60	Comparative Protein Interaction Network Analysis Identifies Shared and Distinct Functions for the Human ROCO Proteins. Proteomics, 2018, 18, e1700444.	2.2	34
61	Detection of endogenous S1292 LRRK2 autophosphorylation in mouse tissue as a readout for kinase activity. Npj Parkinson's Disease, 2018, 4, 13.	5.3	59
62	Molecular changes in the absence of severe pathology in the pulvinar in dementia with Lewy bodies. Movement Disorders, 2018, 33, 982-991.	3.9	24
63	The LRRK2 signalling system. Cell and Tissue Research, 2018, 373, 39-50.	2.9	31
64	LRRK2 phosphorylates membrane-bound Rabs and is activated by GTP-bound Rab7L1 to promote recruitment to the trans-Golgi network. Human Molecular Genetics, 2018, 27, 385-395.	2.9	218
65	mTOR independent alteration in ULK1 Ser758 phosphorylation following chronic LRRK2 kinase inhibition. Bioscience Reports, 2018, 38, .	2.4	16
66	Converging pathways in neurodegeneration, from genetics to mechanisms. Nature Neuroscience, 2018, 21, 1300-1309.	14.8	325
67	Leucine-rich repeat kinase 2 controls protein kinase A activation state through phosphodiesterase 4. Journal of Neuroinflammation, 2018, 15, 297.	7.2	33
68	Front Cover: Comparative Protein Interaction Network Analysis Identifies Shared and Distinct Functions for the Human ROCO Proteins. Proteomics, 2018, 18, 1870081.	2.2	1
69	Frequency of Loss of Function Variants in <i>LRRK2</i> in Parkinson Disease. JAMA Neurology, 2018, 75, 1416.	9.0	66
70	Analysis of macroautophagy related proteins in G2019S LRRK2 Parkinson's disease brains with Lewy body pathology. Brain Research, 2018, 1701, 75-84.	2.2	25
71	Parkinson disease-associated mutations in LRRK2 cause centrosomal defects via Rab8a phosphorylation. Molecular Neurodegeneration, 2018, 13, 3.	10.8	77
72	Parkinson's Disease and Other Synucleinopathies. , 2018, , 117-143.		0

#	Article	IF	Citations
73	Reduction of <scp>PINK</scp> 1 or <scp>DJ</scp> â€1 impair mitochondrial motility in neurites and alter <scp>ER</scp> â€mitochondria contacts. Journal of Cellular and Molecular Medicine, 2018, 22, 5439-5449.	3.6	34
74	A comprehensive analysis of <i>SNCA</i> â€related genetic risk in sporadic parkinson disease. Annals of Neurology, 2018, 84, 117-129.	5.3	50
75	Finding useful biomarkers for Parkinson's disease. Science Translational Medicine, 2018, 10, .	12.4	125
76	AKT signalling selectively regulates PINK1 mitophagy in SHSY5Y cells and human iPSC-derived neurons. Scientific Reports, 2018, 8, 8855.	3.3	57
77	Proteomic analysis reveals co-ordinated alterations in protein synthesis and degradation pathways in LRRK2 knockout mice. Human Molecular Genetics, 2018, 27, 3257-3271.	2.9	52
78	Novel genetic loci associated with hippocampal volume. Nature Communications, 2017, 8, 13624.	12.8	250
79	Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging. Cell Reports, 2017, 18, 557-570.	6.4	326
80	Mechanisms of Mutant LRRK2 Neurodegeneration. Advances in Neurobiology, 2017, 14, 227-239.	1.8	35
81	The G2385R risk factor for Parkinson's disease enhances CHIP-dependent intracellular degradation of LRRK2. Biochemical Journal, 2017, 474, 1547-1558.	3.7	34
82	LRRK2 promotes the activation of NLRC4 inflammasome during <i>Salmonella</i> Typhimurium infection. Journal of Experimental Medicine, 2017, 214, 3051-3066.	8.5	119
83	Alphaâ€synuclein triggers Tâ€cell response. Is Parkinson's disease an autoimmune disorder?. Movement Disorders, 2017, 32, 1327-1327.	3.9	12
84	The DYT6 Dystonia Protein THAP1 Regulates Myelination within the Oligodendrocyte Lineage. Developmental Cell, 2017, 42, 52-67.e4.	7.0	49
85	Gene Linkage and Systems Biology. Advances in Neurobiology, 2017, 15, 479-489.	1.8	0
86	RNAâ€binding proteins implicated in neurodegenerative diseases. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1397.	6.4	45
87	Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease. Brain, 2017, 140, 3191-3203.	7.6	323
88	The Endosomal–Lysosomal Pathway Is Dysregulated by APOE4 Expression in Vivo. Frontiers in Neuroscience, 2017, 11, 702.	2.8	90
89	PAK6 Phosphorylates $14\text{-}3\text{-}3\hat{l}^3$ to Regulate Steady State Phosphorylation of LRRK2. Frontiers in Molecular Neuroscience, 2017, 10, 417.	2.9	46
90	Hexokinases link DJ-1 to the PINK1/parkin pathway. Molecular Neurodegeneration, 2017, 12, 70.	10.8	40

#	Article	IF	CITATIONS
91	Transcriptomic profiling of the human brain reveals that altered synaptic gene expression is associated with chronological aging. Scientific Reports, 2017, 7, 16890.	3.3	47
92	The Effects of Variants in the Parkin, PINK1, and DJ-1 Genes along with Evidence for their Pathogenicity. Current Protein and Peptide Science, 2017, 18, 702-714.	1.4	16
93	Comprehensive promoter level expression quantitative trait loci analysis of the human frontal lobe. Genome Medicine, 2016, 8, 65.	8.2	20
94	Identification of bonaâ€fide LRRK2 kinase substrates. Movement Disorders, 2016, 31, 1140-1141.	3.9	15
95	Cellular functions of LRRK2 implicate vesicular trafficking pathways in Parkinson's disease. Biochemical Society Transactions, 2016, 44, 1603-1610.	3.4	43
96	LRRK2 at the interface of autophagosomes, endosomes and lysosomes. Molecular Neurodegeneration, 2016, 11, 73.	10.8	146
97	Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 2016, 19, 1569-1582.	14.8	213
98	Caspase-1 causes truncation and aggregation of the Parkinson's disease-associated protein α-synuclein. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9587-9592.	7.1	202
99	Structure, function, and leucine-rich repeat kinase 2: On the importance of reproducibility in understanding Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8346-8348.	7.1	2
100	mTOR independent regulation of macroautophagy by Leucine Rich Repeat Kinase 2 via Beclin-1. Scientific Reports, 2016, 6, 35106.	3.3	69
101	The impact of fraudulent and irreproducible data to the translational research crisis – solutions and implementation. Journal of Neurochemistry, 2016, 139, 253-270.	3.9	41
102	ADAR2 affects mRNA coding sequence edits with only modest effects on gene expression or splicing <i>in vivo </i> . RNA Biology, 2016, 13, 15-24.	3.1	6
103	Genes associated with Parkinson's disease: regulation of autophagy and beyond. Journal of Neurochemistry, 2016, 139, 91-107.	3.9	88
104	The function of orthologues of the human Parkinson's disease gene <i>LRRK2</i> across species: implications for disease modelling in preclinical research. Biochemical Journal, 2016, 473, 221-232.	3.7	27
105	Leucineâ€rich repeat kinase 2 interacts with p21â€activated kinase 6 to control neurite complexity in mammalian brain. Journal of Neurochemistry, 2015, 135, 1242-1256.	3.9	57
106	LRRK2 Pathways Leading to Neurodegeneration. Current Neurology and Neuroscience Reports, 2015, 15, 42.	4.2	110
107	Cross-Disorder Genome-Wide Analyses Suggest a Complex Genetic Relationship Between Tourette's Syndrome and OCD. American Journal of Psychiatry, 2015, 172, 82-93.	7.2	117
108	Common genetic variants influence human subcortical brain structures. Nature, 2015, 520, 224-229.	27.8	772

#	Article	IF	Citations
109	Pathways to Parkinsonism Redux: convergent pathobiological mechanisms in genetics of Parkinson's disease. Human Molecular Genetics, 2015, 24, R32-R44.	2.9	73
110	The <i> Polg </i> Mutator Phenotype Does Not Cause Dopaminergic Neurodegeneration in <i> DJ-1 </i> -Deficient Mice. ENeuro, 2015, 2, ENEURO.0075-14.2015.	1.9	20
111	Post-Translational Decrease in Respiratory Chain Proteins in the Polg Mutator Mouse Brain. PLoS ONE, 2014, 9, e94646.	2.5	13
112	Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2626-2631.	7.1	342
113	Phosphorylation of LRRK2 by casein kinase $1\hat{l}\pm$ regulates trans-Golgi clustering via differential interaction with ARHGEF7. Nature Communications, 2014, 5, 5827.	12.8	90
114	<scp>LRRK</scp> 2: dropping (kinase) inhibitions and seeking an (immune) response. Journal of Neurochemistry, 2014, 129, 895-897.	3.9	4
115	Arsenite Stress Down-regulates Phosphorylation and 14-3-3 Binding of Leucine-rich Repeat Kinase 2 (LRRK2), Promoting Self-association and Cellular Redistribution. Journal of Biological Chemistry, 2014, 289, 21386-21400.	3.4	38
116	Lardy brains make Parkinson's disease mice worse. Journal of Neurochemistry, 2014, 131, 697-698.	3.9	1
117	Downregulation of Pink1 influences mitochondrial fusion–fission machinery and sensitizes to neurotoxins in dopaminergic cells. NeuroToxicology, 2014, 44, 140-148.	3.0	30
118	Parkinson disease-associated mutation R1441H in LRRK2 prolongs the "active state―of its GTPase domain. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4055-4060.	7.1	100
119	Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nature Neuroscience, 2014, 17, 664-666.	14.8	398
120	Genetic comorbidities in Parkinson's disease. Human Molecular Genetics, 2014, 23, 831-841.	2.9	57
121	Hexokinase activity is required for recruitment of parkin to depolarized mitochondria. Human Molecular Genetics, 2014, 23, 145-156.	2.9	80
122	Mutant LRRK2 Toxicity in Neurons Depends on LRRK2 Levels and Synuclein But Not Kinase Activity or Inclusion Bodies. Journal of Neuroscience, 2014, 34, 418-433.	3.6	124
123	A Direct Interaction between Leucine-rich Repeat Kinase 2 and Specific \hat{l}^2 -Tubulin Isoforms Regulates Tubulin Acetylation. Journal of Biological Chemistry, 2014, 289, 895-908.	3.4	119
124	Heterogeneity of Leucine-Rich Repeat Kinase 2 Mutations: Genetics, Mechanisms and Therapeutic Implications. Neurotherapeutics, 2014, 11, 738-750.	4.4	51
125	Genetic variability in the regulation of gene expression in ten regions of the human brain. Nature Neuroscience, 2014, 17, 1418-1428.	14.8	620
126	Transcriptomic Changes in Brain Development. International Review of Neurobiology, 2014, 116, 233-250.	2.0	9

#	Article	IF	CITATIONS
127	G.P.213. Neuromuscular Disorders, 2014, 24, 880-881.	0.6	O
128	Use of cysteineâ€reactive crossâ€linkers to probe conformational flexibility of human <scp>DJ</scp> â€1 demonstrates that Glu18 mutations are dimers. Journal of Neurochemistry, 2014, 130, 839-853.	3.9	14
129	Differential protein–protein interactions of <scp>LRRK</scp> 1 and <scp>LRRK</scp> 2 indicate roles in distinct cellular signaling pathways. Journal of Neurochemistry, 2014, 131, 239-250.	3.9	49
130	mRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex. Nature Neuroscience, 2013, 16, 499-506.	14.8	130
131	Age-associated changes in gene expression in human brain and isolated neurons. Neurobiology of Aging, 2013, 34, 1199-1209.	3.1	65
132	Variation in tau isoform expression in different brain regions and disease states. Neurobiology of Aging, 2013, 34, 1922.e7-1922.e12.	3.1	49
133	Genome-wide association study of obsessive-compulsive disorder. Molecular Psychiatry, 2013, 18, 788-798.	7.9	312
134	Lysosomal impairment in Parkinson's disease. Movement Disorders, 2013, 28, 725-732.	3.9	270
135	Identification of protein phosphatase 1 as a regulator of the LRRK2 phosphorylation cycle. Biochemical Journal, 2013, 456, 119-128.	3.7	88
136	A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease. Human Molecular Genetics, 2013, 22, 1039-1049.	2.9	122
137	Resolving the polymorphism-in-probe problem is critical for correct interpretation of expression QTL studies. Nucleic Acids Research, 2013, 41, e88-e88.	14.5	39
138	Initial Assessment of the Pathogenic Mechanisms of the Recently Identified Alzheimer Risk Loci. Annals of Human Genetics, 2013, 77, 85-105.	0.8	41
139	Age-modulated association between prefrontal NAA and the BDNF gene. International Journal of Neuropsychopharmacology, 2013, 16, 1185-1193.	2.1	5
140	Age-associated miRNA Alterations in Skeletal Muscle from Rhesus Monkeys reversed by caloric restriction. Aging, 2013, 5, 692-703.	3.1	104
141	Parkinson disease, cancer, and LRRK2: Causation or association?. Neurology, 2012, 78, 772-773.	1.1	8
142	Parkinsonism Due to Mutations in PINK1, Parkin, and DJ-1 and Oxidative Stress and Mitochondrial Pathways. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009415-a009415.	6.2	140
143	Mitochondrial Quality Control and Dynamics in Parkinson's Disease. Antioxidants and Redox Signaling, 2012, 16, 869-882.	5.4	99
144	MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies. Human Molecular Genetics, 2012, 21, 4094-4103.	2.9	191

#	Article	IF	Citations
145	Gene expression in the Parkinson's disease brain. Brain Research Bulletin, 2012, 88, 302-312.	3.0	42
146	Cellular effects of LRRK2 mutations. Biochemical Society Transactions, 2012, 40, 1070-1073.	3.4	20
147	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
148	Evolution of Neurodegeneration. Current Biology, 2012, 22, R753-R761.	3.9	18
149	Cell population-specific expression analysis of human cerebellum. BMC Genomics, 2012, 13, 610.	2.8	47
150	The G2385R variant of leucine-rich repeat kinase 2 associated with Parkinson's disease is a partial loss-of-function mutation. Biochemical Journal, 2012, 446, 99-111.	3.7	104
151	Identification of Stk25 as a Genetic Modifier of Tau Phosphorylation in Dab1-Mutant Mice. PLoS ONE, 2012, 7, e31152.	2.5	15
152	Agingâ€"RNA in development and disease. Wiley Interdisciplinary Reviews RNA, 2012, 3, 133-143.	6.4	14
153	Integration of GWAS SNPs and tissue specific expression profiling reveal discrete eQTLs for human traits in blood and brain. Neurobiology of Disease, 2012, 47, 20-28.	4.4	121
154	Is inhibition of kinase activity the only therapeutic strategy for LRRK2-associated Parkinson's disease?. BMC Medicine, 2012, 10, 20.	5.5	58
155	Biochemical Characterization of Highly Purified Leucine-Rich Repeat Kinases 1 and 2 Demonstrates Formation of Homodimers. PLoS ONE, 2012, 7, e43472.	2.5	92
156	Role of LRRK2 kinase dysfunction in Parkinson disease. Expert Reviews in Molecular Medicine, 2011, 13, e20.	3.9	26
157	Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nature Genetics, 2011, 43, 699-705.	21.4	502
158	A Feedforward Loop Links Gaucher and Parkinson's Diseases?. Cell, 2011, 146, 9-11.	28.9	12
159	Aggregation of $\hat{l}\pm$ -synuclein in brain samples from subjects with glucocerebrosidase mutations. Molecular Genetics and Metabolism, 2011, 104, 185-188.	1.1	67
160	FUS mutations in sporadic amyotrophic lateral sclerosis. Neurobiology of Aging, 2011, 32, 550.e1-550.e4.	3.1	79
161	Editorial [Hot Topic: Drugs Targets in Parkinson's Disease:Where Are We and Where should We Go? (Guest Editor: Mark R. Cookson)]. CNS and Neurological Disorders - Drug Targets, 2011, 10, 650-650.	1.4	0
162	Pathogenic LRRK2 Mutations Do Not Alter Gene Expression in Cell Model Systems or Human Brain Tissue. PLoS ONE, 2011, 6, e22489.	2.5	27

#	Article	IF	Citations
163	LRRK2 Kinase Activity Is Dependent on LRRK2 GTP Binding Capacity but Independent of LRRK2 GTP Binding. PLoS ONE, 2011, 6, e23207.	2.5	89
164	Conference Scene: Parkinson's disease in the UK: a report from the Parkinson's UK Research Conference. Neurodegenerative Disease Management, 2011, 1, 25-27.	2.2	0
165	Insight into the mode of action of the LRRK2 Y1699C pathogenic mutant. Journal of Neurochemistry, 2011, 116, 304-315.	3.9	114
166	Astrocytes in Parkinson's disease and DJ-1. Journal of Neurochemistry, 2011, 117, 357-358.	3.9	16
167	DJ-1 regulation of mitochondrial function and autophagy through oxidative stress. Autophagy, 2011, 7, 531-532.	9.1	134
168	DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Human Molecular Genetics, 2011, 20, 40-50.	2.9	407
169	A soluble \hat{l} ±-synuclein construct forms a dynamic tetramer. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17797-17802.	7.1	408
170	Distinct DNA methylation changes highly correlated with chronological age in the human brain. Human Molecular Genetics, 2011, 20, 1164-1172.	2.9	360
171	A Two-Stage Meta-Analysis Identifies Several New Loci for Parkinson's Disease. PLoS Genetics, 2011, 7, e1002142.	3.5	247
172	14-3-3 proteins are promising LRRK2 interactors. Biochemical Journal, 2010, 430, e5-e6.	3.7	21
173	Genome-wide Screen Identifies rs646776 near Sortilin as a Regulator of Progranulin Levels in Human Plasma. American Journal of Human Genetics, 2010, 87, 890-897.	6.2	130
174	\hat{l}_{\pm} -Synuclein overexpression increases dopamine toxicity in BE(2)-M17 cells. BMC Neuroscience, 2010, 11, 41.	1.9	44
175	Deep sequencing of coding and non-coding RNA in the CNS. Brain Research, 2010, 1338, 146-154.	2.2	10
176	Mechanisms in dominant parkinsonism: The toxic triangle of LRRK2, αâ€synuclein, and tau. BioEssays, 2010, 32, 227-235.	2.5	61
177	DJâ€1, PINK1, and their effects on mitochondrial pathways. Movement Disorders, 2010, 25, S44-8.	3.9	73
178	MKK6 binds and regulates expression of Parkinson's diseaseâ€related protein LRRK2. Journal of Neurochemistry, 2010, 112, 1593-1604.	3.9	94
179	The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease. Nature Reviews Neuroscience, 2010, 11, 791-797.	10.2	480
180	The Parkinson's Disease Associated LRRK2 Exhibits Weaker In Vitro Phosphorylation of 4E-BP Compared to Autophosphorylation. PLoS ONE, 2010, 5, e8730.	2.5	86

#	Article	IF	Citations
181	Parkinson's disease: insights from pathways. Human Molecular Genetics, 2010, 19, R21-R27.	2.9	151
182	Kinesin-associated protein 3 (KIFAP3) has no effect on survival in a population-based cohort of ALS patients. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12335-12338.	7.1	29
183	Abundant Quantitative Trait Loci Exist for DNA Methylation and Gene Expression in Human Brain. PLoS Genetics, 2010, 6, e1000952.	3.5	722
184	PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin. PLoS Biology, 2010, 8, e1000298.	5.6	2,299
185	Unravelling the role of defective genes. Progress in Brain Research, 2010, 183, 43-57.	1.4	6
186	Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biology, 2010, 11, R56.	8.8	444
187	Reelin and Stk25 Have Opposing Roles in Neuronal Polarization and Dendritic Golgi Deployment. Cell, 2010, 143, 826-836.	28.9	141
188	Mitochondrial Alterations in PINK1 Deficient Cells Are Influenced by Calcineurin-Dependent Dephosphorylation of Dynamin-Related Protein 1. PLoS ONE, 2009, 4, e5701.	2.5	164
189	Membrane-associated farnesylated UCH-L1 promotes α-synuclein neurotoxicity and is a therapeutic target for Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4635-4640.	7.1	121
190	LRRK2 Modulates Vulnerability to Mitochondrial Dysfunction in Caenorhabditis elegans. Journal of Neuroscience, 2009, 29, 9210-9218.	3.6	220
191	Parkinâ€mediated ubiquitination regulates phospholipase Câ€Î³1. Journal of Cellular and Molecular Medicine, 2009, 13, 3061-3068.	3.6	11
192	α-Synuclein and neuronal cell death. Molecular Neurodegeneration, 2009, 4, 9.	10.8	314
193	Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nature Genetics, 2009, 41, 1308-1312.	21.4	1,745
194	Parkin deficiency disrupts calcium homeostasis by modulating phospholipaseâ€fC signalling. FEBS Journal, 2009, 276, 5041-5052.	4.7	44
195	Formation of a Stabilized Cysteine Sulfinic Acid Is Critical for the Mitochondrial Function of the Parkinsonism Protein DJ-1. Journal of Biological Chemistry, 2009, 284, 6476-6485.	3.4	242
196	Pink1 Forms a Multiprotein Complex with Miro and Milton, Linking Pink1 Function to Mitochondrial Trafficking. Biochemistry, 2009, 48, 2045-2052.	2.5	277
197	Leucine-Rich Repeat Kinase 2 Mutations and Parkinson's Disease: Three Questions. ASN Neuro, 2009, 1, AN20090007.	2.7	244
198	The role of PTEN-induced kinase 1 in mitochondrial dysfunction and dynamics. International Journal of Biochemistry and Cell Biology, 2009, 41, 2025-2035.	2.8	44

#	Article	IF	CITATIONS
199	The R1441C mutation alters the folding properties of the ROC domain of LRRK2. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 1194-1197.	3.8	42
200	The Parkinson's disease kinase LRRK2 autophosphorylates its GTPase domain at multiple sites. Biochemical and Biophysical Research Communications, 2009, 389, 449-454.	2.1	138
201	Mutant torsinA interacts with tyrosine hydroxylase in cultured cells. Neuroscience, 2009, 164, 1127-1137.	2.3	23
202	Post-transcriptional regulation of mRNA associated with DJ-1 in sporadic Parkinson disease. Neuroscience Letters, 2009, 452, 8-11.	2.1	73
203	Characterisation of a novel NR4A2 mutation in Parkinson's disease brain. Neuroscience Letters, 2009, 457, 75-79.	2.1	36
204	Metabolic Activity Determines Efficacy of Macroautophagic Clearance of Pathological Oligomeric α-Synuclein. American Journal of Pathology, 2009, 175, 736-747.	3.8	144
205	Development and Characterisation of a Glutamate-Sensitive Motor Neurone Cell Line. Journal of Neurochemistry, 2008, 74, 1895-1902.	3.9	97
206	Mitochondrial function and morphology are impaired in <i>parkin</i> â€mutant fibroblasts. Annals of Neurology, 2008, 64, 555-565.	5.3	339
207	Emerging pathways in genetic Parkinson's disease: Potential role of ceramide metabolism in Lewy body disease. FEBS Journal, 2008, 275, 5767-5773.	4.7	121
208	DYT16, a novel young-onset dystonia-parkinsonism disorder: identification of a segregating mutation in the stress-response protein PRKRA. Lancet Neurology, The, 2008, 7, 207-215.	10.2	202
209	S9.4 Altered mitochondrial dynamics caused by loss of PTEN-induced kinase 1 function, associated with recessive parkinsonism, are reversed by downregulation of Dynamin-related protein 1. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, S55.	1.0	0
210	Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1499-1504.	7.1	218
211	Cell systems and the toxic mechanism(s) of α-synuclein. Experimental Neurology, 2008, 209, 5-11.	4.1	164
212	Animal models for drug discovery in dystonia. Expert Opinion on Drug Discovery, 2008, 3, 83-97.	5.0	22
213	Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1716-1721.	7.1	228
214	The Parkinson Disease-associated Leucine-rich Repeat Kinase 2 (LRRK2) Is a Dimer That Undergoes Intramolecular Autophosphorylation. Journal of Biological Chemistry, 2008, 283, 16906-16914.	3.4	268
215	The Chaperone Activity of Heat Shock Protein 90 Is Critical for Maintaining the Stability of Leucine-Rich Repeat Kinase 2. Journal of Neuroscience, 2008, 28, 3384-3391.	3.6	178
216	RNA binding activity of the recessive parkinsonism protein DJ-1 supports involvement in multiple cellular pathways. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10244-10249.	7.1	196

#	Article	IF	CITATIONS
217	The Role of LRRK2 Kinase Activity in Cellular PD Models. , 2008, , 423-431.		1
218	Genetic neuropathology of Parkinson's disease. International Journal of Clinical and Experimental Pathology, 2008, 1, 217-31.	0.5	70
219	The Metalloprotease Inhibitor TIMP-3 Regulates Amyloid Precursor Protein and Apolipoprotein E Receptor Proteolysis. Journal of Neuroscience, 2007, 27, 10895-10905.	3.6	67
220	The Roles of Kinases in Familial Parkinson's Disease. Journal of Neuroscience, 2007, 27, 11865-11868.	3.6	51
221	Deletion at ITPR1 Underlies Ataxia in Mice and Spinocerebellar Ataxia 15 in Humans. PLoS Genetics, 2007, 3, e108.	3.5	269
222	The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochemical and Biophysical Research Communications, 2007, 357, 668-671.	2.1	244
223	Mutations in LRRK2/dardarin associated with Parkinson disease are more toxic than equivalent mutations in the homologous kinase LRRK1. Journal of Neurochemistry, 2007, 102, 93-102.	3.9	78
224	Expression of PINK1 mRNA in human and rodent brain and in Parkinson's disease. Brain Research, 2007, 1184, 10-16.	2.2	50
225	Hero versus antihero: The multiple roles of \hat{l}_{\pm} -synuclein in neurodegeneration. Experimental Neurology, 2006, 199, 238-242.	4.1	18
226	Intersecting pathways to neurodegeneration in Parkinson's disease: Effects of the pesticide rotenone on DJ-1, α-synuclein, and the ubiquitin–proteasome system. Neurobiology of Disease, 2006, 22, 404-420.	4.4	313
227	Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiology of Disease, 2006, 23, 329-341.	4.4	683
228	Analysis of IFT74as a candidate gene for chromosome 9p-linked ALS-FTD. BMC Neurology, 2006, 6, 44.	1.8	70
229	Genetics of Parkinson's disease and parkinsonism. Annals of Neurology, 2006, 60, 389-398.	5.3	281
230	The Persistence of Memory. New England Journal of Medicine, 2006, 355, 2697-2698.	27.0	3
231	Amyotrophic Lateral Sclerosis 2-Deficiency Leads to Neuronal Degeneration in Amyotrophic Lateral Sclerosis through Altered AMPA Receptor Trafficking. Journal of Neuroscience, 2006, 26, 11798-11806.	3.6	79
232	Parkinson's Disease and Related Disorders. , 2006, , 199-212.		0
233	How genetics research in Parkinson's disease is enhancing understanding of the common idiopathic forms of the disease. Current Opinion in Neurology, 2005, 18, 706-711.	3.6	62
234	Tyrosinase exacerbates dopamine toxicity but is not genetically associated with Parkinson's disease. Journal of Neurochemistry, 2005, 93, 246-256.	3.9	103

#	Article	IF	Citations
235	Neurons inflict self-harm. Nature Medicine, 2005, 11, 1159-1161.	30.7	17
236	Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5703-5708.	7.1	329
237	Effects of DJ-1 mutations and polymorphisms on protein stability and subcellular localization. Molecular Brain Research, 2005, 134, 76-83.	2.3	84
238	Unaltered \hat{l}_{\pm} -synuclein blood levels in juvenile Parkinsonism with a parkin exon 4 deletion. Neuroscience Letters, 2005, 374, 189-191.	2.1	16
239	Identification of the epitope of a monoclonal antibody to DJ-1. Neuroscience Letters, 2005, 374, 203-206.	2.1	3
240	Development, characterisation and epitope mapping of novel monoclonal antibodies for DJ-1 (PARK7) protein. Neuroscience Letters, 2005, 383, 225-230.	2.1	11
241	Dystonia and the Nuclear Envelope. Neuron, 2005, 48, 875-877.	8.1	13
242	THE BIOCHEMISTRY OF PARKINSON'S DISEASE. Annual Review of Biochemistry, 2005, 74, 29-52.	11.1	595
243	Glial cell inclusions and the pathogenesis of neurodegenerative diseases. Neuron Glia Biology, 2004, 1, 13-21.	1.6	52
244	Parkin and ?-Synuclein: Opponent Actions in The Pathogenesis of Parkinson'S Disease. Neuroscientist, 2004, 10, 63-72.	3 . 5	16
245	A strategy for designing inhibitors of α â€synuclein aggregation and toxicity as a novel treatment for Parkinson's disease and related disorders. FASEB Journal, 2004, 18, 1315-1317.	0.5	165
246	The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson's disease. Brain, 2004, 127, 420-430.	7.6	404
247	Molecules That Cause or Prevent Parkinson's Disease. PLoS Biology, 2004, 2, e401.	5. 6	3
248	Evolutionary and functional relationships within the DJ1 superfamily. BMC Evolutionary Biology, 2004, 4, 6.	3.2	138
249	Selective loss of neurofilament expression in Cu/Zn superoxide dismutase (SOD1) linked amyotrophic lateral sclerosis. Journal of Neurochemistry, 2004, 82, 1118-1128.	3.9	70
250	Roles of the proteasome in neurodegenerative disease: Refining the hypothesis. Annals of Neurology, 2004, 56, 315-316.	5. 3	7
251	The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9103-9108.	7.1	1,010
252	Mitochondria and Dopamine. Neuron, 2004, 43, 301-304.	8.1	104

#	Article	IF	Citations
253	Biochemical characterization of torsinB. Molecular Brain Research, 2004, 127, 1-9.	2.3	12
254	Dominant torsinA mutations in cellular systems. Advances in Neurology, 2004, 94, 73-8.	0.8	1
255	Parkin's Substrates and the Pathways Leading to Neuronal Damage. NeuroMolecular Medicine, 2003, 3, 1-14.	3.4	48
256	α-Synuclein Locus Triplication Causes Parkinson's Disease. Science, 2003, 302, 841-841.	12.6	3,836
257	Neurodegeneration: How Does Parkin Prevent Parkinson's Disease?. Current Biology, 2003, 13, R522-R524.	3.9	19
258	Genes and parkinsonism. Lancet Neurology, The, 2003, 2, 221-228.	10.2	98
259	Coâ€ordinate transcriptional regulation of dopamine synthesis genes by αâ€synuclein in human neuroblastoma cell lines. Journal of Neurochemistry, 2003, 85, 957-968.	3.9	143
260	αâ€Synuclein implicated in Parkinson's disease is present in extracellular biological fluids, including human plasma. FASEB Journal, 2003, 17, 1-16.	0.5	520
261	Microarray analysis reveals induction of heat shock proteins mRNAs by the torsion dystonia protein, TorsinA. Neuroscience Letters, 2003, 343, 5-8.	2.1	13
262	Pathways to Parkinsonism. Neuron, 2003, 37, 7-10.	8.1	95
263	L166P Mutant DJ-1, Causative for Recessive Parkinson's Disease, Is Degraded through the Ubiquitin-Proteasome System. Journal of Biological Chemistry, 2003, 278, 36588-36595.	3.4	211
264	Identification and functional characterization of a novel R621C mutation in the synphilin-1 gene in Parkinson's disease. Human Molecular Genetics, 2003, 12, 1223-1231.	2.9	124
265	RING finger 1 mutations in Parkin produce altered localization of the protein. Human Molecular Genetics, 2003, 12, 2957-2965.	2.9	138
266	Crystallizing ideas about Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9111-9113.	7.1	8
267	Analysis of the Cytosolic Proteome in a Cell Culture Model of Familial Amyotrophic Lateral Sclerosis Reveals Alterations to the Proteasome, Antioxidant Defenses, and Nitric Oxide Synthetic Pathways. Journal of Biological Chemistry, 2003, 278, 6371-6383.	3.4	103
268	Cu/Zn superoxide dismutase (SOD1) mutations associated with familial amyotrophic lateral sclerosis (ALS) affect cellular free radical release in the presence of oxidative stress. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders: Official Publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases, 2002, 3, 75-85.	1.2	48
269	Differential gene expression in a cell culture model of SOD1-related familial motor neurone disease. Human Molecular Genetics, 2002, 11, 2061-2075.	2.9	31
270	An <i>In Vitro</i> Model of Parkinson's Disease: Linking Mitochondrial Impairment to Altered α-Synuclein Metabolism and Oxidative Damage. Journal of Neuroscience, 2002, 22, 7006-7015.	3.6	547

#	Article	IF	Citations
271	Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis. Brain, 2002, 125, 1522-1533.	7.6	249
272	Parkin Protects against the Toxicity Associated with Mutant α-Synuclein. Neuron, 2002, 36, 1007-1019.	8.1	542
273	The expression of the glutamate re-uptake transporter excitatory amino acid transporter 1 (EAAT1) in the normal human CNS and in motor neurone disease: an immunohistochemical study. Neuroscience, 2002, 109, 27-44.	2.3	39
274	Sequence conservation between mouse and human synphilin-1. Neuroscience Letters, 2002, 322, 9-12.	2.1	9
275	Normal localization of ΔF323-Y328 mutant torsinA in transfected human cells. Neuroscience Letters, 2002, 327, 75-78.	2.1	27
276	Nicotinic receptors in the putamen of patients with dementia with Lewy bodies and Parkinson's disease: relation to changes in α-synuclein expression. Neuroscience Letters, 2002, 335, 134-138.	2.1	22
277	Cultured glial cells are resistant to the effects of motor neurone disease-associated SOD1 mutations. Neuroscience Letters, 2001, 302, 146-150.	2.1	7
278	Glutamine synthetase activity and expression are not affected by the development of motor neuronopathy in the G93A SOD-1/ALS mouse. Molecular Brain Research, 2001, 94, 131-136.	2.3	14
279	Transfected synphilin-1 forms cytoplasmic inclusions in HEK293 cells. Molecular Brain Research, 2001, 97, 94-102.	2.3	57
280	Identification and characterization of the human parkin gene promoter. Journal of Neurochemistry, 2001, 78, 1146-1152.	3.9	31
281	Superoxide-induced nitric oxide release from cultured glial cells. Brain Research, 2001, 911, 203-210.	2.2	34
282	Screening of AP endonuclease as a candidate gene for amyotrophic lateral sclerosis (ALS). NeuroReport, 2000, 11, 1695-1697.	1.2	31
283	Poly(ADP–ribose) polymerase is found in both the nucleus and cytoplasm of human CNS neurons. Brain Research, 1999, 834, 182-185.	2.2	29
284	Oxidative Stress and Motor Neurone Disease. Brain Pathology, 1999, 9, 165-186.	4.1	191
285	The expression of the glial glutamate transporter protein EAAT2 in motor neuron disease: an immunohistochemical study. European Journal of Neuroscience, 1998, 10, 2481-2489.	2.6	111
286	Peroxynitrite and Hydrogen Peroxide Induced Cell Death in the NSC34 Neuroblastoma × Spinal Cord Cell Line: Role of Poly(ADPâ€Ribose) Polymerase. Journal of Neurochemistry, 1998, 70, 501-508.	3.9	91
287	Selective loss of neurofilament proteins after exposure of differentiated human IMR-32 neuroblastoma cells to oxidative stress. Brain Research, 1996, 738, 162-166.	2,2	17