Yasuyuki Tsuboi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2901656/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions. Applied Surface Science, 2008, 254, 5224-5230.	6.1	226
2	Plasmonic Optical Tweezers toward Molecular Manipulation: Tailoring Plasmonic Nanostructure, Light Source, and Resonant Trapping. Journal of Physical Chemistry Letters, 2014, 5, 2957-2967.	4.6	168
3	Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles. Journal of Materials Chemistry, 2012, 22, 12851.	6.7	135
4	Near-Infrared Continuous-Wave Light Driving a Two-Photon Photochromic Reaction with the Assistance of Localized Surface Plasmon. Journal of the American Chemical Society, 2009, 131, 12623-12627.	13.7	128
5	Optical Trapping of Quantum Dots Based on Gap-Mode-Excitation of Localized Surface Plasmon. Journal of Physical Chemistry Letters, 2010, 1, 2327-2333.	4.6	122
6	Nanosecond Time-Resolved Observations of Laser Ablation of Silver in Water. Japanese Journal of Applied Physics, 2007, 46, 1533-1535.	1.5	104
7	Microsecond-resolved imaging of laser ablation at solid–liquid interface: investigation of formation process of nano-size metal colloids. Applied Surface Science, 2004, 229, 365-371.	6.1	102
8	Permanent Fixing or Reversible Trapping and Release of DNA Micropatterns on a Gold Nanostructure Using Continuous-Wave or Femtosecond-Pulsed Near-Infrared Laser Light. Journal of the American Chemical Society, 2013, 135, 6643-6648.	13.7	93
9	Optical Trapping of Amino Acids in Aqueous Solutions. Journal of Physical Chemistry C, 2010, 114, 5589-5593.	3.1	75
10	Reversible Photoinduced Formation and Manipulation of a Two-Dimensional Closely Packed Assembly of Polystyrene Nanospheres on a Metallic Nanostructure. Journal of Physical Chemistry C, 2013, 117, 2500-2506.	3.1	71
11	Poly(N-Isopropylacrylamide) Microparticles Produced by Radiation Pressure of a Focused Laser Beam:Â A Structural Analysis by Confocal Raman Microspectroscopy Combined with a Laser-Trapping Technique. Journal of Physical Chemistry B, 2005, 109, 7033-7039.	2.6	65
12	The 248 nm Excimer Laser Ablation of Liquid Benzene Derivatives: A Relation between Ablation Threshold and Molecular Photochemical Reactivity. The Journal of Physical Chemistry, 1994, 98, 11237-11241.	2.9	64
13	Metallic-Nanostructure-Enhanced Optical Trapping of Flexible Polymer Chains in Aqueous Solution As Revealed by Confocal Fluorescence Microspectroscopy. Journal of Physical Chemistry C, 2012, 116, 14610-14618.	3.1	54
14	Plasmon-Enhanced Photoluminescence and Photocatalytic Activities of Visible-Light-Responsive ZnS-AgInS2 Solid Solution Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 2511-2520.	3.1	51
15	Crystallization of Lysozyme Based on Molecular Assembling by Photon Pressure. Japanese Journal of Applied Physics, 2007, 46, L1234.	1.5	47
16	Photoinduced Electron Transfer Processes of C60-Doped Poly(N-vinylcarbazole) Films As Revealed by Picosecond Laser Photolysis. Journal of Physical Chemistry B, 1997, 101, 5118-5123.	2.6	46
17	Optical manipulation of proteins in aqueous solution. Applied Surface Science, 2009, 255, 9906-9908.	6.1	44
18	Nanosecond imaging study on laser ablation of liquid benzene. Applied Physics Letters, 1994, 64, 2745-2747.	3.3	41

#	Article	IF	CITATIONS
19	Intramolecular charge transfer in rigidly linked naphthalene–trialkylamine compounds. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 4047-4057.	1.7	39
20	Phase Separation Dynamics of Aqueous Solutions of Thermoresponsive Polymers Studied by a Laser T-Jump Technique. Journal of Physical Chemistry B, 2008, 112, 2562-2565.	2.6	39
21	Resonant Excitation Effect on Optical Trapping of Myoglobin: The Important Role of a Heme Cofactor. Journal of Physical Chemistry C, 2013, 117, 10691-10697.	3.1	38
22	AFM observation of silk fibroin on mica substrates: morphologies reflecting the secondary structures. Thin Solid Films, 2003, 440, 208-216.	1.8	37
23	Switching from photochemical to photothermal mechanism in laser ablation of benzene solutions. Journal of Applied Physics, 1997, 82, 5799-5806.	2.5	36
24	UV Laser Induced Jet Formation from Liquid Surface As Revealed by Nanosecond Time-Resolved Imaging and Spectroscopic Studies. The Journal of Physical Chemistry, 1995, 99, 10305-10312.	2.9	35
25	The 248-nm Excimer-Laser-Ablation Mechanism of Liquid Benzene Derivatives:  Photochemical Formation of Benzyl Radical Leads to Ablation. Journal of Physical Chemistry A, 1998, 102, 1661-1665.	2.5	34
26	Pulsed laser deposition of silk protein: Effect of photosensitized-ablation on the secondary structure in thin deposited films. Journal of Applied Physics, 2001, 89, 7917-7923.	2.5	32
27	Pulsed laser deposition of collagen and keratin. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 145, 209-214.	3.9	32
28	Laser-Induced Shock Wave Can Spark Triboluminescence of Amorphous Sugars. Journal of Physical Chemistry A, 2008, 112, 6517-6521.	2.5	32
29	Nanosecond and Femtosecond Laser Photochemistry and Ablation Dynamics of Neat Liquid Benzenes. Journal of Physical Chemistry B, 2002, 106, 3049-3060.	2.6	31
30	Highly Sensitive Detection of Organic Molecules on the Basis of a Poly(<i>N</i> -isopropylacrylamide) Microassembly Formed by Plasmonic Optical Trapping. Analytical Chemistry, 2017, 89, 532-537.	6.5	29
31	Optical tweezing and binding at high irradiation powers on black-Si. Scientific Reports, 2017, 7, 12298.	3.3	29
32	Plasmonic Manipulation of DNA using a Combination of Optical and Thermophoretic Forces: Separation of Different-Sized DNA from Mixture Solution. Scientific Reports, 2020, 10, 3349.	3.3	29
33	Hydrogel Adhesion with Wrinkle Formation by Spatial Control of Polymer Networks. Journal of Physical Chemistry B, 2016, 120, 5042-5046.	2.6	27
34	Biodegradable PLGA nanoparticles loaded with hydrophobic drugs: confocal Raman microspectroscopic characterization. Journal of Materials Chemistry B, 2015, 3, 3677-3680.	5.8	26
35	Laser-Driven Shock Wave-Induced Triboluminescence of an Organic Crystal:  Toward a Semiquantitative Study. Journal of Physical Chemistry B, 2003, 107, 7547-7550.	2.6	24
36	Optical Trapping of Polystyrene Nanoparticles on Black Silicon: Implications for Trapping and Studying Bacteria and Viruses. ACS Applied Nano Materials, 2020, 3, 9831-9841.	5.0	24

#	Article	IF	CITATIONS
37	Photothermal Ablation of Polystyrene Film by 248 NM Excimer Laser Irradiation: a Mechanistic Study by Time-Resolved Measurements. Laser Chemistry, 1996, 16, 167-177.	0.5	22
38	Nanohole Processing of Polymer Films Based on the Laser-Induced Superheating of Au Nanoparticles. Applied Physics Express, 0, 1, 087001.	2.4	22
39	Deposition of a thin polystyrene film by anthracene-photosensitized laser ablation at 351 nm. Applied Physics Letters, 1999, 74, 3896-3898.	3.3	21
40	Template-Guided Synthesis and Individual Characterization of Poly(N-isopropylacrylamide)-Based Microgels. Langmuir, 2005, 21, 7076-7079.	3.5	21
41	A sensor for adenosine triphosphate fabricated by laser-induced forward transfer of luciferase onto a poly(dimethylsiloxane) microchip. Applied Surface Science, 2007, 253, 8422-8427.	6.1	21
42	Thin Film Formation of a Protein by Laser Ablation Deposition Technique. Chemistry Letters, 1998, 27, 521-522.	1.3	20
43	Thin films formation of poly(N-vinylcarbazole) by laser ablation deposition. Journal of Applied Physics, 1999, 85, 4189-4195.	2.5	20
44	Nanodot array deposition via single shot laser interference pattern using laser-induced forward transfer. International Journal of Extreme Manufacturing, 2020, 2, 025101.	12.7	20
45	Temperature near Gold Nanoparticles under Photoexcitation: Evaluation Using a Fluorescence Correlation Technique. Journal of Physical Chemistry C, 2013, 117, 8388-8396.	3.1	19
46	Laser Ablation of Silk Protein (Fibroin) Films. Japanese Journal of Applied Physics, 2002, 41, 4772-4779.	1.5	18
47	Acceleration of a photochromic ring-opening reaction of diarylethene derivatives by excitation of localized surface plasmon. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221, 250-255.	3.9	18
48	Phaseâ€Separation Dynamics of Aqueous Poly (<i>N</i> â€isopropylacrylamide) Solutions: Characteristic Behavior of the Molecular Weight and Concentration Dependences. Macromolecular Chemistry and Physics, 2012, 213, 1879-1884.	2.2	18
49	Accelerating the Phase Separation in Aqueous Poly(N-isopropylacrylamide) Solutions by Slight Modification of the Polymer Stereoregularity: A Single Molecule Fluorescence Study. Journal of Physical Chemistry C, 2013, 117, 10818-10824.	3.1	17
50	Picosecond Dynamics of Excited 9,9â€~-Bianthryl Adsorbed on Porous Glass: Role of Symmetry Breaking in the Ground Stateâ€. Journal of Physical Chemistry A, 2002, 106, 2067-2073.	2.5	16
51	Pulsed Laser Deposition of Poly(tetrafluoroethylene), Poly(methylmethacrylate), and Polycarbonate Utilizing Anthracene-Photosensitized Ablation. Japanese Journal of Applied Physics, 2002, 41, 885-890.	1.5	16
52	Phase Separation of Aqueous Poly(vinyl methyl ether) Solutions Induced by the Photon Pressure of a Focused Near-Infrared Laser Beam. Bulletin of the Chemical Society of Japan, 2007, 80, 1926-1931.	3.2	16
53	Plasmon-Based Optical Trapping of Polymer Nano-Spheres as Explored by Confocal Fluorescence Microspectroscopy: A Possible Mechanism of a Resonant Excitation Effect. Japanese Journal of Applied Physics, 2012, 51, 092001.	1.5	16
54	Plasmonic optical trapping of soft nanomaterials such as polymer chains and DNA: micro-patterning formation. Optical Review, 2015, 22, 137-142.	2.0	16

#	Article	IF	CITATIONS
55	Effects of Syndiotacticity on the Dynamic and Static Phase Separation Properties of Poly(<i>N</i> -isopropylacrylamide) in Aqueous Solution. Journal of Physical Chemistry B, 2016, 120, 7724-7730.	2.6	16
56	Phase transition dynamics of fluorescent-labeled poly(N-isopropylacrylamide) in aqueous solution as revealed by time-resolved spectroscopy combined with a laser T-jump technique. Chemical Physics Letters, 2009, 468, 42-45.	2.6	15
57	A method for an approximate determination of a polymer-rich-domain concentration in phase-separated poly(N-isopropylacrylamide) aqueous solution by means of confocal Raman microspectroscopy combined with optical tweezers. Analytica Chimica Acta, 2015, 854, 118-121.	5.4	15
58	Plasmonic optical trapping of nanometer-sized J- /H- dye aggregates as explored by fluorescence microspectroscopy. Optics Express, 2017, 25, 13617.	3.4	15
59	Plasmon-Based Optical Trapping of Polymer Nano-Spheres as Explored by Confocal Fluorescence Microspectroscopy: A Possible Mechanism of a Resonant Excitation Effect. Japanese Journal of Applied Physics, 2012, 51, 092001.	1.5	15
60	Laser-Induced Reversible Volume Phase Transition of a Poly(N-isopropylacrylamide) Gel Explored by Raman Microspectroscopy. Polymer Journal, 2008, 40, 367-374.	2.7	14
61	Rapid Phase Separation in Aqueous Solution of Temperatureâ€Sensitive Poly(<i>N</i> , <i>N</i> â€diethylacrylamide). Macromolecular Chemistry and Physics, 2016, 217, 2576-2583.	2.2	14
62	Regular Assembly of Polymer Nanoparticles by Optical Trapping Enhanced with a Random Array of Si Needles for Reconfigurable Photonic Crystals in Liquid. ACS Applied Nano Materials, 2019, 2, 7637-7643.	5.0	14
63	Laser-Induced Transfer of Noble Metal Nanodots with Femtosecond Laser-Interference Processing. Nanomaterials, 2021, 11, 305.	4.1	14
64	Vacuum-deposited films of liquid crystal molecule of 4-dodecyloxy-4′-cyanobiphenyl: Their electronic spectra and molecular aggregate structures. Thin Solid Films, 1997, 311, 277-285.	1.8	13
65	Beam shaping by spatial light modulator and 4 <i>f </i> system to square and top-flat for interference laser processing. Proceedings of SPIE, 2017, , .	0.8	13
66	Preparation and Shape-Modification of Silver Colloids by Laser Ablation in Liquids: A Brief Review. Science of Advanced Materials, 2012, 4, 391-400.	0.7	12
67	Phase Separation Dynamics of Aqueous Poly [(2â€ethoxy) ethoxy ethyl vinyl ether] Solutions as Explored using the Laser Tâ€Jump Technique Combined With Photometry. Macromolecular Chemistry and Physics, 2012, 213, 374-381.	2.2	11
68	A long arm and a tight grip. Nature Nanotechnology, 2016, 11, 5-6.	31.5	11
69	Dynamics of the Phase Separation in a Thermoresponsive Polymer: Accelerated Phase Separation of Stereocontrolled Poly(N,N-diethylacrylamide) in Water. Langmuir, 2018, 34, 13690-13696.	3.5	11
70	Thermo-Plasmonic Trapping of Living Cyanobacteria on a Gold Nanopyramidal Dimer Array: Implications for Plasmonic Biochips. ACS Applied Nano Materials, 2020, 3, 10067-10072.	5.0	10
71	Microanalysis of Single Poly(<i>N</i> -isopropylacrylamide) Droplet Produced by an Optical Tweezer in Water: Isotacticity Dependence of Growth and Chemical Structure of the Droplet. Journal of Physical Chemistry B, 2020, 124, 8454-8463.	2.6	10
72	Fluorescent Crystalloluminescence ofN-Isopropylcarbazole. Journal of Physical Chemistry B, 2004, 108, 2822-2826.	2.6	9

#	Article	IF	CITATIONS
73	Incoherent Optical Tweezers on Black Titanium. ACS Applied Materials & Interfaces, 2021, 13, 27586-27593.	8.0	9
74	Electrophoretic Adhesion of Conductive Hydrogels. Macromolecular Rapid Communications, 2020, 41, 2000169.	3.9	8
75	Interferometric spectral imaging of liquid in laser ablation. Review of Scientific Instruments, 1996, 67, 3222-3228.	1.3	7
76	Preparation of a Novel Thin Film Utilizing a Magnetic Field: Alignment of Organic Microcrystals as Revealed by Atomic Force Microscopy. Japanese Journal of Applied Physics, 1997, 36, L1048-L1050.	1.5	7
77	Absorption Spectra of C60-Excited States in Various Solvents: Their Dependence on the Ionization Potential of Solvent Molecules. Bulletin of the Chemical Society of Japan, 2000, 73, 589-598.	3.2	7
78	Formation of Single Double-Layered Coacervate of Poly(<i>N,N</i> -diethylacrylamide) in Water by a Laser Tweezer. Langmuir, 2021, 37, 2874-2883.	3.5	7
79	Vacuum-deposited films of liquid crystal molecules of 4-n-alkoxy-4'-cyanobiphenyls: Their electronic spectra and molecular aggregate structures. Thin Solid Films, 1999, 338, 243-251.	1.8	6
80	Nanofabrication of high throughput 30 nm hole 2D arrays by a simple visible laser ablation technique. Applied Surface Science, 2017, 420, 868-872.	6.1	6
81	Laser trapping/confocal Raman spectroscopic characterization of PLGA-PEG nanoparticles. Soft Matter, 2018, 14, 8090-8094.	2.7	6
82	Vacuum-deposited films of mesogen of 4-n-pentyl-4″-cyano-p-terphenyl: their electronic spectra and molecular aggregate structures. Thin Solid Films, 2000, 370, 285-293.	1.8	5
83	Local Melting of Gold Thin Films by Femtosecond Laser-Interference Processing to Generate Nanoparticles on a Source Target. Nanomaterials, 2018, 8, 477.	4.1	5
84	Nonlinear Photophysics and Ablation of Liquid Naphthalene Derivatives:  Fluence-Dependence of Luminescence Spectra upon 248 nm Laser Excitation. Journal of Physical Chemistry A, 2003, 107, 3017-3023.	2.5	4
85	Enhancement of 2-Photon Absorption of a Dye in a Polymer Microsphere Based on an Optical Cavity Effect. Analytical Sciences, 2010, 26, 1241-1245.	1.6	4
86	Rapid hydrogel repair utilizing microgel architectures. Materials Chemistry Frontiers, 2017, 1, 1594-1599.	5.9	4
87	Dynamics of Laser Induced Morphological Changes of Liquids Part I. Cavitation and Explosive Vaporization of Liquids The Review of Laser Engineering, 1995, 23, 2-8.	0.0	4
88	Optical Trapping of Nanocrystals at Oil/Water Interfaces: Implications for Photocatalysis. ACS Applied Nano Materials, 2021, 4, 11743-11752.	5.0	4
89	Nanotraffic Lights: Rayleigh Scattering Microspectroscopy of Optically Trapped Octahedral Gold Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 23096-23102.	3.1	3
90	Dynamics of Laser Induced Morphological Changes of Liquids Part II. Liquid Ablation by Electronic Excitation The Review of Laser Engineering, 1995, 23, 9-15.	0.0	2

#	Article	IF	CITATIONS
91	Fluorescence Colour Control in Peryleneâ€Labeled Polymer Chains Trapped by Nanotextured Silicon. Angewandte Chemie - International Edition, 2022, , .	13.8	2
92	Molecular Probe for a Fluorous Medium: Long-Lived Phosphorescence of .ALPHADiketones in Perfluoromethylcyclohexane at Room Temperature. Analytical Sciences, 2005, 21, 303-308.	1.6	1
93	Nanoscale Laser Processing of Hollow Silica Microbeads Assisted by Surface Plasmon Resonance of Gold Particles. Chemistry Letters, 2011, 40, 1411-1413.	1.3	1
94	Thermo-plasmonic manipulation of living cyanobacteria on a gold nanostructure. , 2017, , .		1
95	Nanostructure-assisted optical tweezers for microspectroscopic polymer analysis. Polymer Journal, 2021, 53, 271-281.	2.7	1
96	Raman microspectroscopic study on an optically formed poly(N-isopropylacrylamide) rich microparticle: molecular weight dependence of a polymer concentration in the particle. , 2018, , .		1
97	Optical trapping of gold and semiconductor nanoparticles at oil-water interfaces with a focused near-infrared laser beam. , 2018, , .		1
98	Thin Films Formation of Organic Polymers by Photosensitized Pulsed Laser Deposition The Review of Laser Engineering, 2003, 31, 135-140.	0.0	1
99	Effect of applied voltage on aggregate structure of microcrystals in vacuum-deposited films of mesogens. Journal of Crystal Growth, 1998, 193, 732-737.	1.5	0
100	Magnetic Field Effect on Laser Ablation of Organic Polymer Films as Revealed by Atomic Force Microscopy. Molecular Crystals and Liquid Crystals, 1998, 314, 291-296.	0.3	0
101	Surface-plasmon-based optical trapping of hard nanoparticles: two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure. Proceedings of SPIE, 2013, , .	0.8	0
102	Mechanistic study on plasmon-based optical trapping of hard and soft nanoparticles. , 2013, , .		0
103	Macromol. Chem. Phys. 23/2016. Macromolecular Chemistry and Physics, 2016, 217, 2664-2664.	2.2	0
104	Raman Microspectroscopic Studies on Thermo-Responsive Polymer Rich Domains Formed by Optical Tweezers. Kobunshi Ronbunshu, 2018, 75, 243-253.	0.2	0
105	Plasmonic optical trapping of pyrene-pendant polymer chains by controlling thermophoretic force. Journal of Physics: Conference Series, 2019, 1220, 012041.	0.4	0
106	Formation of a single poly(N,N-diethylacrylamide) micro-droplet in water by coupling of photothermal effects and an optical force. Journal of Physics: Conference Series, 2019, 1220, 012034.	0.4	0
107	Optical Trapping and of Micro-Spectroscopy of Proteins. Seibutsu Butsuri, 2009, 49, 252-255.	0.1	0
108	Optical Trapping of Nanoparticles and Polymers Based on Localized Surface Plasmons. The Review of Laser Engineering, 2013, 41, 361.	0.0	0

#	Article	IF	CITATIONS
109	Thermally Induced Nanocrystal Array of Poly(N-Vinylcarbazole) on Si-Wafer Substrate. Materials Sciences and Applications, 2014, 05, 271-277.	0.4	0
110	Optical Trapping of Soft-Matter Nanoparticles Based on Localized Surface Plasmon Under. The Review of Laser Engineering, 2014, 42, 766.	0.0	0
111	Laser Micro/Nano Processing of Materials Based on Light Absorption of Metallic Nanoparticles. The Review of Laser Engineering, 2015, 43, 740.	0.0	0
112	Thermophoresis-assisted optical trapping of pyrene-labeled hydrophilic polymer chains. , 2018, , .		0
113	Novel non-plasmonic optical trapping: nano-structured semiconductor assisted (NASSCA) optical tweezers. , 2018, , .		0
114	Fluorescence Colour Control in Perylene‣abeled Polymer Chains Trapped by Nanotextured Silicon. Angewandte Chemie, 0, , .	2.0	0
115	Frontispiz: Fluorescence Colour Control in Perylene‣abeled Polymer Chains Trapped by Nanotextured Silicon. Angewandte Chemie, 2022, 134, .	2.0	0
116	Frontispiece: Fluorescence Colour Control in Perylene‣abeled Polymer Chains Trapped by Nanotextured Silicon. Angewandte Chemie - International Edition, 2022, 61, .	13.8	0
117	Generation of Ultralong Liposome Tubes by Membrane Fusion beneath a Laser-Induced Microbubble on Gold Surfaces. ACS Omega, 2022, 7, 13120-13127.	3.5	Ο