Yihui He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2901531/publications.pdf

Version: 2024-02-01

257450 168389 3,029 61 24 53 citations h-index g-index papers 63 63 63 2858 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Study of Annihilation Photon Pair Coincidence Time Resolution Using Prompt Photon Emissions in New Perovskite Bulk Crystals. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 804-810.	3.7	2
2	Sensitivity and Detection Limit of Spectroscopicâ€Grade Perovskite CsPbBr ₃ Crystal for Hard Xâ€Ray Detection. Advanced Functional Materials, 2022, 32, .	14.9	32
3	Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nature Photonics, 2022, 16, 14-26.	31.4	122
4	CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy \hat{I}^3 -rays. Nature Photonics, 2021, 15, 36-42.	31.4	210
5	Enhanced Photocurrent of All-Inorganic Two-Dimensional Perovskite Cs ₂ Pbl ₂ Cl _{via Pressure-Regulated Excitonic Features. Journal of the American Chemical Society, 2021, 143, 2545-2551.}	13.7	79
6	Demonstration of Energy-Resolved \hat{l}^3 -Ray Detection at Room Temperature by the CsPbCl ₃ Perovskite Semiconductor. Journal of the American Chemical Society, 2021, 143, 2068-2077.	13.7	62
7	Tripleâ€Cation and Mixedâ€Halide Perovskite Single Crystal for Highâ€Performance Xâ€ray Imaging. Advanced Materials, 2021, 33, e2006010.	21.0	163
8	Amorphous to Crystal Phase Change Memory Effect with Two-Fold Bandgap Difference in Semiconducting K ₂ Bi ₈ Se ₁₃ . Journal of the American Chemical Society, 2021, 143, 6221-6228.	13.7	9
9	Excitons in CsPbBr ₃ Halide Perovskite. Journal of Physical Chemistry Letters, 2021, 12, 9301-9307.	4.6	8
10	Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection. Nature Communications, 2020, 11, 2304.	12.8	286
11	Inch-Size OD-Structured Lead-Free Perovskite Single Crystals for Highly Sensitive Stable X-Ray Imaging. Matter, 2020, 3, 180-196.	10.0	202
12	Three-Dimensional Lead Iodide Perovskitoid Hybrids with High X-ray Photoresponse. Journal of the American Chemical Society, 2020, 142, 6625-6637.	13.7	82
13	Direct thermal neutron detection by the 2D semiconductor 6LilnP2Se6. Nature, 2020, 577, 346-349.	27.8	59
14	Thermoplastic Membranes Incorporating Semiconductive Metal–Organic Frameworks: An Advance on Flexible Xâ€ray Detectors. Angewandte Chemie, 2020, 132, 11954-11958.	2.0	46
15	Thermoplastic Membranes Incorporating Semiconductive Metalâ \in Organic Frameworks: An Advance on Flexible Xâ \in ray Detectors. Angewandte Chemie - International Edition, 2020, 59, 11856-11860.	13.8	60
16	Organic Cation Alloying on Intralayer A and Interlayer A' sites in 2D Hybrid Dion–Jacobson Lead Bromide Perovskites (A')(A)Pb ₂ Br ₇ . Journal of the American Chemical Society, 2020, 142, 8342-8351.	13.7	64
17	Monte Carlo simulation of transport properties in wide gap Hg3Se2I2. Semiconductor Science and Technology, 2019, 34, 115003.	2.0	1
18	Antiferromagnetic Semiconductor BaFMn _{0.5} Te with Unique Mn Ordering and Red Photoluminescence. Journal of the American Chemical Society, 2019, 141, 17421-17430.	13.7	10

#	Article	IF	Citations
19	Ultrafast correlated charge and lattice motion in a hybrid metal halide perovskite. Science Advances, 2019, 5, eaaw5558.	10.3	66
20	Purification and Improved Nuclear Radiation Detection of Tl ₆ SI ₄ Semiconductor. Crystal Growth and Design, 2019, 19, 4738-4744.	3.0	4
21	Controlling the Vapor Transport Crystal Growth of Hg ₃ Se ₂ I ₂ Hard Radiation Detector Using Organic Polymer. Crystal Growth and Design, 2019, 19, 2074-2080.	3.0	7
22	Uniaxial Expansion of the 2D Ruddlesden–Popper Perovskite Family for Improved Environmental Stability. Journal of the American Chemical Society, 2019, 141, 5518-5534.	13.7	193
23	Study of the Coincidence Time Resolution of New Perovskite Bulk Crystals. , 2019, , .		3
24	Carrier recombination mechanism in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>CsPbB</mml:mi><mml:msub><mm mathvariant="normal">r<mml:mn>3</mml:mn></mm></mml:msub></mml:mrow></mml:math> revealed by time-resolved photoluminescence spectroscopy. Physical Review B, 2019, 100, .	nl:mi 3.2	14
25	Coherent charge-phonon correlations and exciton dynamics in orthorhombic CH3NH3Pbl3 measured by ultrafast multi-THz spectroscopy. Journal of Chemical Physics, 2019, 151, 214201.	3.0	6
26	Zero-Dimensional Cs ₂ Tel ₆ Perovskite: Solution-Processed Thick Films with High X-ray Sensitivity. ACS Photonics, 2019, 6, 196-203.	6.6	70
27	Noise sources and their limitations on the performance of compound semiconductor hard radiation detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 916, 133-140.	1.6	4
28	Perovskite CsPbBr3 single crystal detector for alpha-particle spectroscopy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 922, 217-221.	1.6	83
29	High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nature Communications, 2018, 9, 1609.	12.8	381
30	Stoichiometric Effects on the Photoelectric Properties of LilnSe ₂ Crystals for Neutron Detection. Crystal Growth and Design, 2018, 18, 2864-2870.	3.0	16
31	An Effective Purification Process for the Nuclear Radiation Detector Tl ₆ Sel ₄ . Crystal Growth and Design, 2018, 18, 3484-3493.	3.0	9
32	Cu ₂ I ₂ Se ₆ : A Metal–Inorganic Framework Wide-Bandgap Semiconductor for Photon Detection at Room Temperature. Journal of the American Chemical Society, 2018, 140, 1894-1899.	13.7	19
33	Role of Stoichiometry in the Growth of Large Pb ₂ P ₂ Se ₆ Crystals for Nuclear Radiation Detection. ACS Photonics, 2018, 5, 566-573.	6.6	15
34	Abrupt Thermal Shock of (NH ₄) ₂ Mo ₃ S ₁₃ Leads to Ultrafast Synthesis of Porous Ensembles of MoS ₂ Nanocrystals for High Gain Photodetectors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38193-38200.	8.0	5
35	Deep Level and Nearâ€Bandâ€Edge Recombination in Semiconducting Antiperovskite Hg ₃ Se ₂ I ₂ Single Crystals. Advanced Optical Materials, 2018, 6, 1800328.	7.3	2
36	Resolving the Energy of \hat{I}^3 -Ray Photons with MAPbI ₃ Single Crystals. ACS Photonics, 2018, 5, 4132-4138.	6.6	100

#	Article	IF	CITATIONS
37	Conversion of Single Crystal (NH4)2Mo3S13·H2O to Isomorphic Pseudocrystals of MoS2Nanoparticles. Chemistry of Materials, 2018, 30, 3847-3853.	6.7	14
38	Cs ₂ Pbl ₂ Cl ₂ , All-Inorganic Two-Dimensional Ruddlesden–Popper Mixed Halide Perovskite with Optoelectronic Response. Journal of the American Chemical Society, 2018, 140, 11085-11090.	13.7	167
39	\hat{l} ±-Particle Detection and Charge Transport Characteristics in the A ₃ M ₂ I ₉ Defect Perovskites (A = Cs, Rb; M = Bi, Sb). ACS Photonics, 2018, 5, 3748-3762.	6.6	88
40	Defect Antiperovskite Compounds $Hg < sub > 3 < sub > Q < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 2 < sub > 3 < sub > $	13.7	45
41	TlSn ₂ 1 ₅ , a Robust Halide Antiperovskite Semiconductor for \hat{I}^3 -Ray Detection at Room Temperature. ACS Photonics, 2017, 4, 1805-1813.	6.6	33
42	Improvement of the THz response of Zn _{1â°'x} Mn _x Te bulk crystals grown by a temperature gradient solution method. CrystEngComm, 2017, 19, 3051-3057.	2.6	2
43	Electronic defects in the halide antiperovskite semiconductor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Hg</mml:mi><mml:mmml:mmn>="normal"> <mml:mn>=="normal"> <mml:mn>=="normal"> <mml:mn>=="normal"> <mml:mn>=="normal"> <mml:mn>=="normal"> <mml:mi><mml:mn>=="normal"> </mml:mn></mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mmml:mmn></mml:msub></mml:mrow></mml:math>	n>3 <td>l:mn></td>	l:mn>
44	Improved Crystal Growth of Tl ₆ Sel ₄ for \hat{I}^3 -Ray Detection Material by Oxide Impurity Removal. Crystal Growth and Design, 2017, 17, 6096-6104.	3.0	6
45	Refined Synthesis and Crystal Growth of Pb ₂ P ₂ Se ₆ for Hard Radiation Detectors. Crystal Growth and Design, 2016, 16, 5100-5109.	3.0	12
46	Te inclusion-induced electrical field perturbation in CdZnTe single crystals revealed by Kelvin probe force microscopy. Micron, 2016, 88, 48-53.	2.2	6
47	Calculation of the High-Temperature Point Defects Structure in Te-Rich CdTe. Journal of Electronic Materials, 2016, 45, 4747-4754.	2.2	1
48	Comparison of In doped and In, Pb co-doped Cd0.9Zn0.1Te. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 790, 10-13.	1.6	4
49	Interplay mechanism between secondary phase particles and extended dislocations in CdZnTe crystals. CrystEngComm, 2015, 17, 8639-8644.	2.6	10
50	Characterization of CdZnTe co-doped with indium and lead. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 770, 48-51.	1.6	5
51	Migration of Te inclusions in CdZnTe single crystals under the temperature gradient annealing. Journal of Crystal Growth, 2014, 402, 15-21.	1.5	16
52	TEM study on HgIn2Te4 precipitates in Hg3In2Te6 crystals grown by the Bridgman method. CrystEngComm, 2014, 16, 7660-7666.	2.6	2
53	HRTEM study on the ordered phases in Hg ₃ In ₂ Te ₆ crystals grown by Bridgman method. CrystEngComm, 2014, 16, 5073-5079.	2.6	4
54	Dislocation-mediated coupling mechanism between the microstructural defects and Te inclusions in CdZnTe single crystals. Scripta Materialia, 2014, 82, 17-20.	5.2	18

Үіниі Не

#	Article	IF	CITATION
55	Research into the electrical property variation of undoped CdTe and ZnTe crystals grown under Te-rich conditions. Journal of Alloys and Compounds, 2014, 612, 392-397.	5.5	17
56	Correlation of dislocations and Te inclusions in detector-grade CdZnTe crystals grown by MVB method. , $2012, $, .		0
57	Investigation of Te inclusion induced glides and the corresponding dislocations in CdZnTe crystal. CrystEngComm, 2012, 14, 417-420.	2.6	20
58	Study of Te aggregation at the initial growth stage of CdZnTe films deposited by CSS. Applied Physics A: Materials Science and Processing, 2012, 108, 447-450.	2.3	6
59	Matrix-controlled morphology evolution of Te inclusions in CdZnTe single crystal. Scripta Materialia, 2012, 67, 5-8.	5.2	26
60	Morphology evolution of micron-scale secondary phases in CdZnTe crystals grown by vertical Bridgman method. Journal of Alloys and Compounds, 2011, 509, 2338-2342.	5. 5	15
61	Characterization of detector-grade CdZnTe:Al crystals obtained by annealing. Journal of Crystal Growth, 2011, 324, 22-25.	1.5	5