
Masayoshi Takeuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2901380/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intracellular Toxic Advanced Glycation End-Products in 1.4E7 Cell Line Induce Death with Reduction of Microtubule-Associated Protein 1 Light Chain 3 and p62. Nutrients, 2022, 14, 332.	4.1	10
2	The Association between Accumulation of Toxic Advanced Glycation End-Products and Cytotoxic Effect in MC3T3-E1 Cells. Nutrients, 2022, 14, 990.	4.1	7
3	Pyridoxamine and Aminoguanidine Attenuate the Abnormal Aggregation of β-Tubulin and Suppression of Neurite Outgrowth by Glyceraldehyde-Derived Toxic Advanced Glycation End-Products. Frontiers in Pharmacology, 2022, 13, .	3.5	8
4	Effects of Toxic AGEs (TAGE) on Human Health. Cells, 2022, 11, 2178.	4.1	8
5	Intracellular Toxic Advanced Glycation End-Products May Induce Cell Death and Suppress Cardiac Fibroblasts. Metabolites, 2022, 12, 615.	2.9	7
6	Glyceraldehyde-derived advanced glycation end-products are associated with left ventricular ejection fraction and brain natriuretic peptide in patients with diabetic adverse cardiac remodeling. Scandinavian Cardiovascular Journal, 2022, 56, 208-216.	1.2	1
7	Suppression of Hepatic Stellate Cell Death by Toxic Advanced Glycation End-Products. Biological and Pharmaceutical Bulletin, 2021, 44, 112-117.	1.4	5
8	RasGRP2 inhibits glyceraldehyde-derived toxic advanced glycation end-products from inducing permeability in vascular endothelial cells. Scientific Reports, 2021, 11, 2959.	3.3	10
9	Intracellular Toxic AGEs (TAGE) Triggers Numerous Types of Cell Damage. Biomolecules, 2021, 11, 387.	4.0	24
10	Protective Effects of Collagen Tripeptides in Human Aortic Endothelial Cells by Restoring ROS-Induced Transcriptional Repression. Nutrients, 2021, 13, 2226.	4.1	4
11	Serum levels of 1,5-anhydroglucitol and 1,5-anhydrofructose-derived advanced glycation end products in patients undergoing hemodialysis. Diabetology and Metabolic Syndrome, 2021, 13, 85.	2.7	2
12	Trapa bispinosa Roxb. extract lowers advanced glycation end-products and increases live births in older patients with assisted reproductive technology: a randomized controlled trial. Reproductive Biology and Endocrinology, 2021, 19, 149.	3.3	12
13	Accumulation of Toxic Advanced Glycation End-Products Induces Cytotoxicity and Inflammation in Hepatocyte-Like Cells Differentiated from Human Induced Pluripotent Stem Cells. Biological and Pharmaceutical Bulletin, 2021, 44, 1399-1402.	1.4	8
14	Potential of an Interorgan Network Mediated by Toxic Advanced Glycation End-Products in a Rat Model. Nutrients, 2021, 13, 80.	4.1	6
15	Impact of intracellular toxic advanced glycation end-products (TAGE) on murine myoblast cell death. Diabetology and Metabolic Syndrome, 2020, 12, 54.	2.7	19
16	Intracellular Toxic Advanced Glycation End-Products Promote the Production of Reactive Oxygen Species in HepG2 Cells. International Journal of Molecular Sciences, 2020, 21, 4861.	4.1	19
17	Toxic AGEs (TAGE) theory: a new concept for preventing the development of diseases related to lifestyle. Diabetology and Metabolic Syndrome, 2020, 12, 105.	2.7	28
18	The Effect of Glyceraldehyde-Derived Advanced Glycation End Products on β-Tubulin-Inhibited Neurite Outgrowth in SH-SY5Y Human Neuroblastoma Cells. Nutrients, 2020, 12, 2958.	4.1	14

#	Article	IF	CITATIONS
19	Immunological evidence for inÂvivo production of novel advanced glycation end-products from 1,5-anhydro-D-fructose, a glycogen metabolite. Scientific Reports, 2019, 9, 10194.	3.3	13
20	Evidence for Toxic Advanced Glycation End-Products Generated in the Normal Rat Liver. Nutrients, 2019, 11, 1612.	4.1	18
21	The Relevance of Toxic AGEs (TAGE) Cytotoxicity to NASH Pathogenesis: A Mini-Review. Nutrients, 2019, 11, 462.	4.1	19
22	Intracellular toxic advanced glycation end-products in cardiomyocytes may cause cardiovascular disease. Scientific Reports, 2019, 9, 2121.	3.3	30
23	High doses of antipsychotic polypharmacy are related to an increase in serum levels of pentosidine in patients with schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 76, 42-48.	4.8	8
24	Ratio of serum levels of AGEs to soluble RAGE is correlated with trimethylamine-N-oxide in non-diabetic subjects. International Journal of Food Sciences and Nutrition, 2017, 68, 1013-1020.	2.8	9
25	Impact of intracellular glyceraldehyde-derived advanced glycation end-products on human hepatocyte cell death. Scientific Reports, 2017, 7, 14282.	3.3	31
26	Diurnal glycemic fluctuation is associated with severity of coronary artery disease in prediabetic patients: Possible role of nitrotyrosine and glyceraldehyde-derived advanced glycation end products. Journal of Cardiology, 2017, 69, 625-631.	1.9	18
27	Role of Glyceraldehyde-Derived AGEs and Mitochondria in Superoxide Production in Femoral Artery of OLETF Rat and Effects of Pravastatin. Biological and Pharmaceutical Bulletin, 2017, 40, 1903-1908.	1.4	3
28	Toxic AGE (TAGE) Theory for the Pathophysiology of the Onset/Progression of NAFLD and ALD. Nutrients, 2017, 9, 634.	4.1	33
29	Effect of Collagen Tripeptide on Atherosclerosis in Healthy Humans. Journal of Atherosclerosis and Thrombosis, 2017, 24, 530-538.	2.0	21
30	Glyceraldehyde-Derived Advanced Glycation End Products Accumulate Faster Than N ^ε -(Carboxymethyl) Lysine. Annals of Dermatology, 2017, 29, 508.	0.9	2
31	Generation of glyceraldehyde-derived advanced glycation end-products in pancreatic cancer cells and the potential of tumor promotion. World Journal of Gastroenterology, 2017, 23, 4910.	3.3	24
32	Gene Expression Changes Associated with the Loss of Heterogeneous Nuclear Ribonucleoprotein M Function. American Journal of Molecular Biology, 2017, 07, 87-98.	0.3	4
33	Serum Levels of Toxic AGEs (TAGE) May Be a Promising Novel Biomarker for the Onset/Progression of Lifestyle-Related Diseases. Diagnostics, 2016, 6, 23.	2.6	38
34	Acute effects of statin on reduction of angiopoietin-like 2 and glyceraldehyde-derived advanced glycation end-products levels in patients with acute myocardial infarction: a message from SAMIT (Statin for Acute Myocardial Infarction Trial). Heart and Vessels, 2016, 31, 1583-1589.	1.2	32
35	Glyceraldehyde caused Alzheimer's disease-like alterations in diagnostic marker levels in SH-SY5Y human neuroblastoma cells. Scientific Reports, 2015, 5, 13313.	3.3	56
36	Elevation of Serum Levels of Advanced Glycation End Products in Patients With Nonâ€B or Non Hepatocellular Carcinoma. Journal of Clinical Laboratory Analysis, 2015, 29, 480-484.	2.1	28

#	Article	IF	CITATIONS
37	Assessment of the Concentrations of Various Advanced Glycation End-Products in Beverages and Foods That Are Commonly Consumed in Japan. PLoS ONE, 2015, 10, e0118652.	2.5	64
38	Ratio of Serum Levels of AGEs to Soluble Form of RAGE Is a Predictor of Endothelial Function. Diabetes Care, 2015, 38, 119-125.	8.6	95
39	In vitroidentification of nonalcoholic fatty liver disease-related protein hnRNPM. World Journal of Gastroenterology, 2015, 21, 1784.	3.3	19
40	Altered serum glyceraldehyde-derived advanced glycation end product (AGE) and soluble AGE receptor levels indicate carbonyl stress in patients with schizophrenia. Neuroscience Letters, 2015, 593, 51-55.	2.1	19
41	The Association between Glyceraldehyde-Derived Advanced Glycation End-Products and Colorectal Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1855-1863.	2.5	30
42	Contribution of the toxic advanced glycation end-products-receptor axis in nonalcoholic steatohepatitis-related hepatocellular carcinoma. World Journal of Hepatology, 2015, 7, 2459.	2.0	26
43	Switching to multiple daily injection therapy with glulisine improves glycaemic control, vascular damage and treatment satisfaction in basal insulin glargineâ€injected diabetic patients. Diabetes/Metabolism Research and Reviews, 2014, 30, 693-700.	4.0	19
44	Possible effects of glimepiride beyond glycemic control in patients with type 2 diabetes: a preliminary report. Cardiovascular Diabetology, 2014, 13, 15.	6.8	28
45	Involvement of the TAGE-RAGE system in non-alcoholic steatohepatitis: Novel treatment strategies. World Journal of Hepatology, 2014, 6, 880.	2.0	28
46	Amelioration of experimental autoimmune uveoretinitis by inhibition of glyceraldehyde-derived advanced glycation end-product formation. Journal of Leukocyte Biology, 2014, 96, 1077-1085.	3.3	12
47	DNA aptamer raised against advanced glycation end products inhibits melanoma growth in nude mice. Laboratory Investigation, 2014, 94, 422-429.	3.7	39
48	Sulforaphane inhibits advanced glycation end product–induced pericyte damage by reducing expression of receptor for advanced glycation end products. Nutrition Research, 2014, 34, 807-813.	2.9	26
49	DNA Aptamer Raised Against AGEs Blocks the Progression of Experimental Diabetic Nephropathy. Diabetes, 2013, 62, 3241-3250.	0.6	72
50	Relationship between Advanced Glycation End Products and Plaque Progression in Patients with Acute Coronary Syndrome: The JAPAN-ACS Sub-study. Cardiovascular Diabetology, 2013, 12, 5.	6.8	55
51	Presence of Glyceraldehyde-Derived Advanced Glycation End-Products in the Liver of Insulin-Resistant Mice. International Journal for Vitamin and Nutrition Research, 2013, 83, 137-141.	1.5	8
52	Positive Association Between Serum Level of Glyceraldehyde-Derived Advanced Glycation End Products and Vascular Inflammation Evaluated by [18F]Fluorodeoxyglucose Positron Emission Tomography. Diabetes Care, 2012, 35, 2618-2625.	8.6	78
53	Serum Levels of Advanced Glycation End Products (AGEs) are Inversely Associated with the Number and Migratory Activity of Circulating Endothelial Progenitor Cells in Apparently Healthy Subjects. Cardiovascular Therapeutics, 2012, 30, 249-254.	2.5	42
54	Advanced Glycation End Products Increase Permeability of Brain Microvascular Endothelial Cells through Reactive Oxygen Species–Induced Vascular Endothelial Growth Factor Expression. Journal of Stroke and Cerebrovascular Diseases, 2012, 21, 293-298.	1.6	31

#	Article	IF	CITATIONS
55	Glycer-AGEs-RAGE signaling enhances the angiogenic potential of hepatocellular carcinoma by upregulating VEGF expression. World Journal of Gastroenterology, 2012, 18, 1781.	3.3	57
56	Advanced glycation end-products accumulation compromises embryonic development and achievement of pregnancy by assisted reproductive technology. Human Reproduction, 2011, 26, 604-610.	0.9	79
57	An α-glucosidase inhibitor, acarbose treatment decreases serum levels of glyceraldehyde-derived advanced glycation end products (AGEs) in patients with type 2 diabetes. Clinical and Experimental Medicine, 2010, 10, 139-141.	3.6	29
58	The formation of intracellular glyceraldehyde-derived advanced glycation end-products and cytotoxicity. Journal of Gastroenterology, 2010, 45, 646-655.	5.1	44
59	Atorvastatin decreases serum levels of advanced glycation endproducts (AGEs) in nonalcoholic steatohepatitis (NASH) patients with dyslipidemia: clinical usefulness of AGEs as a biomarker for the attenuation of NASH. Journal of Gastroenterology, 2010, 45, 750-757.	5.1	141
60	Immunological detection of fructose-derived advanced glycation end-products. Laboratory Investigation, 2010, 90, 1117-1127.	3.7	49
61	Cancer Malignancy Is Enhanced by Glyceraldehyde-Derived Advanced Glycation End-Products. Journal of Oncology, 2010, 2010, 1-8.	1.3	51
62	Involvement of the Toxic AGEs (TAGE)-RAGE System in the Pathogenesis of Diabetic Vascular Complications: A Novel Therapeutic Strategy. Current Drug Targets, 2010, 11, 1468-1482.	2.1	81
63	Involvement of Toxic AGEs (TAGE) in the Pathogenesis of Diabetic Vascular Complications and Alzheimer's Disease. Journal of Alzheimer's Disease, 2009, 16, 845-858.	2.6	104
64	Advanced glycation end products enhance the proliferation and activation of hepatic stellate cells. Journal of Gastroenterology, 2008, 43, 298-304.	5.1	93
65	Circulating advanced glycation end products (AGEs) and soluble form of receptor for AGEs (sRAGE) are independent determinants of serum monocyte chemoattractant proteinâ€1 (MCPâ€1) levels in patients with type 2 diabetes. Diabetes/Metabolism Research and Reviews, 2008, 24, 109-114.	4.0	80
66	Olmesartan blocks advanced glycation end products (AGEs)-induced angiogenesis in vitro by suppressing receptor for AGEs (RAGE) expression. Microvascular Research, 2008, 75, 130-134.	2.5	56
67	Olmesartan Blocks Inflammatory Reactions in Endothelial Cells Evoked by Advanced Glycation End Products by Suppressing Generation of Reactive Oxygen Species. Ophthalmic Research, 2008, 40, 10-15.	1.9	59
68	Possible Involvement of Advanced Glycation End-Products (AGEs) in the Pathogenesis of Alzheimers Disease. Current Pharmaceutical Design, 2008, 14, 973-978.	1.9	200
69	Short-chain aldehyde-derived ligands for RAGE and their actions on endothelial cells. Diabetes Research and Clinical Practice, 2007, 77, S30-S40.	2.8	38
70	Elevated levels of serum advanced glycation end products in patients with nonâ€alcoholic steatohepatitis. Journal of Gastroenterology and Hepatology (Australia), 2007, 22, 1112-1119.	2.8	164
71	Positive association of serum levels of advanced glycation end products with thrombogenic markers in humans. Metabolism: Clinical and Experimental, 2006, 55, 912-917.	3.4	40
72	Pigment epithelium-derived factor (PEDF) inhibits advanced glycation end product (AGE)-induced C-reactive protein expression in hepatoma cells by suppressing Rac-1 activation. FEBS Letters, 2006, 580, 2788-2796.	2.8	33

#	Article	IF	CITATIONS
73	Susceptibility of brain microvascular endothelial cells to advanced glycation end products-induced tissue factor upregulation is associated with intracellular reactive oxygen species. Brain Research, 2006, 1108, 179-187.	2.2	40
74	Toxic Advanced Glycation End Products (TAGE) Theory in Alzheimer's Disease. American Journal of Alzheimer's Disease and Other Dementias, 2006, 21, 197-208.	1.9	115
75	Pigment Epithelium-derived Factor Inhibits Advanced Glycation End Product-induced Retinal Vascular Hyperpermeability by Blocking Reactive Oxygen Species-mediated Vascular Endothelial Growth Factor Expression. Journal of Biological Chemistry, 2006, 281, 20213-20220.	3.4	194
76	Involvement of Advanced Glycation End-products (AGEs) in Alzheimers Disease. Current Alzheimer Research, 2004, 1, 39-46.	1.4	116
77	Glyceraldehyde-derived advanced glycation end products in Alzheimer?s disease. Acta Neuropathologica, 2004, 108, 189-93.	7.7	72
78	Regulation of Human Melanoma Growth and Metastasis by AGE–AGE Receptor Interactions. Journal of Investigative Dermatology, 2004, 122, 461-467.	0.7	130
79	Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochemical Journal, 2003, 370, 1097-1109.	3.7	656
80	Neurotoxicity of Acetaldehyde-Derived Advanced Glycation End Products for Cultured Cortical Neurons. Journal of Neuropathology and Experimental Neurology, 2003, 62, 486-496.	1.7	32
81	Advanced Glycation End Product-induced Apoptosis and Overexpression of Vascular Endothelial Growth Factor and Monocyte Chemoattractant Protein-1 in Human-cultured Mesangial Cells. Journal of Biological Chemistry, 2002, 277, 20309-20315.	3.4	275
82	Alternative Routes for the Formation of Immunochemically Distinct Advanced Glycation End-products In Vivo. Current Molecular Medicine, 2001, 1, 305-315.	1.3	67
83	Immunological Evidence that Non-carboxymethyllysine Advanced Glycation End-products Are Produced from Short Chain Sugars and Dicarbonyl Compounds in vivo. Molecular Medicine, 2000, 6, 114-125.	4.4	191
84	Neurotoxicity of Advanced Glycation End-Products for Cultured Cortical Neurons. Journal of Neuropathology and Experimental Neurology, 2000, 59, 1094-1105.	1.7	179
85	Detection of Noncarboxymethyllysine and Carboxymethyllysine Advanced Glycation End Products (AGE) in Serum of Diabetic Patients. Molecular Medicine, 1999, 5, 393-405.	4.4	127