
Tudor A Fulga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2900725/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A KMT2A-AFF1 gene regulatory network highlights the role of core transcription factors and reveals the regulatory logic of key downstream target genes. Genome Research, 2021, 31, 1159-1173.	5.5	16
2	Harnessing tRNA for Processing Ability and Promoter Activity. Methods in Molecular Biology, 2021, 2162, 89-114.	0.9	0
3	Controlling the Activity of CRISPR Transcriptional Regulators with Inducible sgRNAs. Methods in Molecular Biology, 2021, 2162, 153-184.	0.9	0
4	FOXN1 forms higher-order nuclear condensates displaced by mutations causing immunodeficiency. Science Advances, 2021, 7, eabj9247.	10.3	10
5	The conserved microRNA miR-34 regulates synaptogenesis via coordination of distinct mechanisms in presynaptic and postsynaptic cells. Nature Communications, 2020, 11, 1092.	12.8	24
6	Somatic mosaicism and common genetic variation contribute to the risk of very-early-onset inflammatory bowel disease. Nature Communications, 2020, 11, 995.	12.8	37
7	MicroRNAs Regulate Multiple Aspects of Locomotor Behavior in Drosophila. G3: Genes, Genomes, Genetics, 2020, 10, 43-55.	1.8	4
8	Addendum: Precise tuning of gene expression levels in mammalian cells. Nature Communications, 2019, 10, 2622.	12.8	2
9	Decoupling tRNA promoter and processing activities enables specific Pol-II Cas9 guide RNA expression. Nature Communications, 2019, 10, 1490.	12.8	31
10	Precise tuning of gene expression levels in mammalian cells. Nature Communications, 2019, 10, 818.	12.8	43
11	Regulation of Circadian Behavior by Astroglial MicroRNAs in <i>Drosophila</i> . Genetics, 2018, 208, 1195-1207.	2.9	38
12	MicroRNAs Regulate Sleep and Sleep Homeostasis in Drosophila. Cell Reports, 2018, 23, 3776-3786.	6.4	34
13	The Drosophila homologue of MEGF8 is essential for early development. Scientific Reports, 2018, 8, 8790.	3.3	7
14	Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs. Nature Communications, 2017, 8, 14633.	12.8	75
15	Interrogation of Functional miRNA–Target Interactions by CRISPR/Cas9 Genome Engineering. Methods in Molecular Biology, 2017, 1580, 79-97.	0.9	7
16	Engineering Synthetic Signaling Pathways with Programmable dCas9-Based Chimeric Receptors. Cell Reports, 2017, 20, 2639-2653.	6.4	64
17	Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development. Scientific Reports, 2017, 7, 9079.	3.3	76
18	In situ functional dissection of RNA cis-regulatory elements by multiplex CRISPR-Cas9 genome engineering. Nature Communications, 2017, 8, 2109.	12.8	11

Tudor A Fulga

#	Article	IF	CITATIONS
19	A multiplexable TALE-based binary expression system for in vivo cellular interaction studies. Nature Communications, 2017, 8, 1663.	12.8	5
20	Tiny giants of gene regulation: experimental strategies formicroRNAfunctional studies. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 311-362.	5.9	60
21	Cover Image, Volume 5, Issue 3. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, i.	5.9	0
22	Deubiquitinase Usp8 regulates α-synuclein clearance and modifies its toxicity in Lewy body disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4688-97.	7.1	99
23	Up-regulation of miR-31 in human atrial fibrillation begets the arrhythmia by depleting dystrophin and neuronal nitric oxide synthase. Science Translational Medicine, 2016, 8, 340ra74.	12.4	68
24	The tricellular junction protein Gliotactin auto-regulates mRNA levels via BMP signaling induction of miR-184. Journal of Cell Science, 2016, 129, 1477-89.	2.0	6
25	<i>ASXL1</i> mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts. Oncotarget, 2015, 6, 44061-44071.	1.8	52
26	MicroRNA-Dependent Transcriptional Silencing of Transposable Elements in Drosophila Follicle Cells. PLoS Genetics, 2015, 11, e1005194.	3.5	18
27	microRNAs That Promote or Inhibit Memory Formation in <i>Drosophila melanogaster</i> . Genetics, 2015, 200, 569-580.	2.9	38
28	Evaluation of the role of miR-31-dependent reduction in dystrophin and nNOS on atrial-fibrillation-induced electrical remodelling in man. Lancet, The, 2015, 385, S82.	13.7	12
29	A transgenic resource for conditional competitive inhibition of conserved Drosophila microRNAs. Nature Communications, 2015, 6, 7279.	12.8	63
30	Understanding functional miRNA–target interactions in vivo by site-specific genome engineering. Nature Communications, 2014, 5, 4640.	12.8	86
31	Cross-talking noncoding RNAs contribute to cell-specific neurodegeneration in SCA7. Nature Structural and Molecular Biology, 2014, 21, 955-961.	8.2	79
32	Abstract 17767: A MiR-31-dependent Loss of Dystrophin & Nnos in the Human Atria Plays a Key Role in Atrial Fibrillation-induced Electrical Remodelling. Circulation, 2014, 130, .	1.6	0
33	A genome-wide transgenic resource for conditional expression of Drosophila microRNAs. Development (Cambridge), 2012, 139, 2821-2831.	2.5	82
34	Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nature Methods, 2009, 6, 897-903.	19.0	185
35	Synapses and Growth Cones on Two Sides of a Highwire. Neuron, 2008, 57, 339-344.	8.1	26