Zohreh Vafapour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2900579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cost-Effective Bull's Eye Aperture-Style Multi-Band Metamaterial Absorber at Sub-THz Band: Design, Numerical Analysis, and Physical Interpretation. Sensors, 2022, 22, 2892.	3.8	20
2	Solute concentration sensing in two aqueous solution using an optical metamaterial sensor. Journal of Luminescence, 2021, 230, 117734.	3.1	44
3	The Potential of Refractive Index Nanobiosensing Using a Multi-Band Optically Tuned Perfect Light Metamaterial Absorber. IEEE Sensors Journal, 2021, 21, 13786-13793.	4.7	46
4	Colon Cancer Detection by Designing and Analytical Evaluation of a Water-Based THz Metamaterial Perfect Absorber. IEEE Sensors Journal, 2021, 21, 19307-19313.	4.7	54
5	Sensing, Switching and Modulating Applications of a Superconducting THz Metamaterial. IEEE Sensors Journal, 2021, 21, 15187-15195.	4.7	35
6	Breast cancer detection capability of a tunable perfect semiconductor absorber: analytical and numerical evaluation. Optical Engineering, 2021, 60, .	1.0	21
7	Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing. Carbon, 2020, 158, 559-567.	10.3	218
8	Thermo Optical Switching and Sensing Applications of an Infrared Metamaterial. IEEE Sensors Journal, 2020, 20, 3235-3241.	4.7	47
9	The potential of terahertz sensing for cancer diagnosis. Heliyon, 2020, 6, e05623.	3.2	72
10	Optically Tunable Triple-Band Perfect Absorber for Nonlinear Optical Liquids Sensing. IEEE Sensors Journal, 2020, 20, 10130-10137.	4.7	31
11	Polarization-Independent Perfect Optical Metamaterial Absorber as a Glucose Sensor in Food Industry Applications. IEEE Transactions on Nanobioscience, 2019, 18, 622-627.	3.3	107
12	Sensing Avian Influenza Viruses Using Terahertz Metamaterial Reflector. IEEE Sensors Journal, 2019, 19, 5161-5166.	4.7	90
13	Water-Based Terahertz Metamaterial for Skin Cancer Detection Application. IEEE Sensors Journal, 2019, 19, 1519-1524.	4.7	80
14	Thermo-optical applications of a novel terahertz semiconductor metamaterial design. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 35.	2.1	26
15	Tunable Slow Light in Graphene Metamaterial in a Broad Terahertz Range. Plasmonics, 2018, 13, 63-70.	3.4	27
16	Time, space, and spectral multiplexing for radiation balanced operation of semiconductor lasers. Optics Express, 2018, 26, 24124.	3.4	3
17	Bandgap engineering and prospects for radiation-balanced vertical-external-cavity surface-emitting semiconductor lasers. Optics Express, 2018, 26, 12985.	3.4	3
18	Large group delay in a microwave metamaterial analog of electromagnetically induced reflectance.	1.5	43

ZOHREH VAFAPOUR

#	Article	IF	CITATIONS
19	Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1192.	2.1	53
20	Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications. Applied Optics, 2018, 57, 722.	1.8	44
21	Slow light modulator using semiconductor metamaterial. , 2018, , .		19
22	Achieving a High Q-Factor and Tunable Slow-Light via Classical Electromagnetically Induced Transparency (Cl-EIT) in Metamaterials. Plasmonics, 2017, 12, 479-488.	3.4	40
23	Near infrared biosensor based on Classical Electromagnetically Induced Reflectance (Cl-EIR) in a planar complementary metamaterial. Optics Communications, 2017, 387, 1-11.	2.1	52
24	Subwavelength Micro-Antenna for Achieving Slow Light at Microwave Wavelengths via Electromagnetically Induced Transparency in 2D Metamaterials. Plasmonics, 2017, 12, 1343-1352.	3.4	27
25	Disappearance of Plasmonically Induced Reflectance by Breaking Symmetry in Metamaterials. Plasmonics, 2017, 12, 1331-1342.	3.4	25
26	Graphene-based mid-infrared biosensor. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 2586.	2.1	56
27	New Approach of Plasmonically Induced Reflectance in a Planar Metamaterial for Plasmonic Sensing Applications. Plasmonics, 2016, 11, 609-618.	3.4	28
28	New Regime of Plasmonically Induced Transparency. Plasmonics, 2015, 10, 1809-1815.	3.4	31