Christine Schiltz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2900424/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Faces are represented holistically in the human occipito-temporal cortex. NeuroImage, 2006, 32, 1385-1394.	4.2	257
2	Impaired Face Discrimination in Acquired Prosopagnosia Is Associated with Abnormal Response to Individual Faces in the Right Middle Fusiform Gyrus. Cerebral Cortex, 2006, 16, 574-586.	2.9	174
3	The functionally defined right occipital and fusiform "face areas―discriminate novel from visually familiar faces. NeuroImage, 2003, 19, 877-883.	4.2	164
4	Understanding the functional neuroanatomy of acquired prosopagnosia. NeuroImage, 2007, 35, 836-852.	4.2	149
5	Neuronal Mechanisms of Perceptual Learning: Changes in Human Brain Activity with Training in Orientation Discrimination. Neurolmage, 1999, 9, 46-62.	4.2	136
6	From Coarse to Fine? Spatial and Temporal Dynamics of Cortical Face Processing. Cerebral Cortex, 2011, 21, 467-476.	2.9	131
7	Holistic perception of individual faces in the right middle fusiform gyrus as evidenced by the composite face illusion. Journal of Vision, 2010, 10, 1-16.	0.3	124
8	How Does the Brain Discriminate Familiar and Unfamiliar Faces?: A PET Study of Face Categorical Perception. Journal of Cognitive Neuroscience, 2001, 13, 1019-1034.	2.3	109
9	Recovery from adaptation to facial identity is larger for upright than inverted faces in the human occipito-temporal cortex. Neuropsychologia, 2006, 44, 912-922.	1.6	97
10	Developing number–space associations: SNARC effects using a color discrimination task in 5-year-olds. Journal of Experimental Child Psychology, 2013, 116, 775-791.	1.4	86
11	Predicting first-grade mathematics achievement: the contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence. Frontiers in Psychology, 2014, 5, 272.	2.1	81
12	The roles of "face―and "non-face―areas during individual face perception: Evidence by fMRI adaptation in a brain-damaged prosopagnosic patient. NeuroImage, 2008, 40, 318-332.	4.2	67
13	Are patients with Parkinson's disease blind to blindsight?. Brain, 2014, 137, 1838-1849.	7.6	56
14	The Impact of Mathematical Proficiency on the Number-Space Association. PLoS ONE, 2014, 9, e85048.	2.5	53
15	Horizontal tuning for faces originates in high-level Fusiform Face Area. Neuropsychologia, 2016, 81, 1-11.	1.6	48
16	The neural signature of numerosity by separating numerical and continuous magnitude extraction in visual cortex with frequency-tagged EEG. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5726-5732.	7.1	47
17	PET study of human voluntary saccadic eye movements in darkness: effect of task repetition on the activation pattern. European Journal of Neuroscience, 1998, 10, 2328-2336.	2.6	44
18	The horizontal tuning of face perception relies on the processing of intermediate and high spatial frequencies. Journal of Vision, 2011, 11, 1-1.	0.3	40

CHRISTINE SCHILTZ

#	Article	IF	CITATIONS
19	Training early visuo-spatial abilities: A controlled classroom-based intervention study. Applied Developmental Science, 2019, 23, 1-21.	1.7	39
20	ls there continuity between categorical and coordinate spatial relations coding?. Neuropsychologia, 2008, 46, 576-594.	1.6	38
21	The relation between language and arithmetic in bilinguals: insights from different stages of language acquisition. Frontiers in Psychology, 2015, 6, 265.	2.1	36
22	Visuo-spatial abilities are key for young children's verbal number skills. Journal of Experimental Child Psychology, 2018, 166, 604-620.	1.4	33
23	The impact of inhibition capacities and age on number–space associations. Cognitive Processing, 2014, 15, 329-342.	1.4	32
24	Face inversion disrupts the perception of vertical relations between features in the right human occipitoâ€ŧemporal cortex. Journal of Neuropsychology, 2009, 3, 45-67.	1.4	30
25	Estimation abilities of large numerosities in Kindergartners. Frontiers in Psychology, 2013, 4, 518.	2.1	30
26	How Math Anxiety Relates to Number–Space Associations. Frontiers in Psychology, 2016, 07, 1401.	2.1	28
27	Harmonic Amplitude Summation for Frequency-tagging Analysis. Journal of Cognitive Neuroscience, 2021, 33, 1-22.	2.3	28
28	A rapid, objective and implicit measure of visual quantity discrimination. Neuropsychologia, 2018, 111, 180-189.	1.6	26
29	Attentional shifts induced by uninformative number symbols modulate neural activity in human occipital cortex. Neuropsychologia, 2012, 50, 3419-3428.	1.6	25
30	Shifts of spatial attention cued by irrelevant numbers: Electrophysiological evidence from a target discrimination task. Journal of Cognitive Psychology, 2015, 27, 442-458.	0.9	25
31	Mathematical abilities in elementary school: Do they relate to number–space associations?. Journal of Experimental Child Psychology, 2017, 161, 126-147.	1.4	25
32	Solving arithmetic problems in first and second language: Does the language context matter?. Learning and Instruction, 2016, 42, 72-82.	3.2	23
33	Face perception is tuned to horizontal orientation in the N170 time window. Journal of Vision, 2014, 14, 5-5.	0.3	22
34	A Pet Study of Human Skill Learning: Changes in Brain Activity Related to Learning an Orientation Discrimination Task. Cortex, 2001, 37, 243-265.	2.4	21
35	Relationships between number and space processing in adults with and without dyscalculia. Acta Psychologica, 2011, 138, 193-203.	1.5	21
36	Local Discriminability Determines the Strength of Holistic Processing for Faces in the Fusiform Face Area. Frontiers in Psychology, 2013, 3, 604.	2.1	21

CHRISTINE SCHILTZ

#	Article	IF	CITATIONS
37	Selectivity of Face Perception to Horizontal Information over Lifespan (from 6 to 74 Year Old). PLoS ONE, 2015, 10, e0138812.	2.5	21
38	Mental arithmetic in the bilingual brain: Language matters. Neuropsychologia, 2017, 101, 17-29.	1.6	19
39	High test-retest reliability of a neural index of rapid automatic discrimination of unfamiliar individual faces. Visual Cognition, 2019, 27, 127-141.	1.6	19
40	Developmental changes in neural letterâ€selectivity: A 1â€year followâ€up of beginning readers. Developmental Science, 2021, 24, e12999.	2.4	18
41	Task instructions determine the visuospatial and verbal–spatial nature of number–space associations. Quarterly Journal of Experimental Psychology, 2015, 68, 1895-1909.	1.1	16
42	The right hemispheric dominance for face perception in preschool children depends on the visual discrimination level. Developmental Science, 2020, 23, e12914.	2.4	16
43	Lateralized Neural Responses to Letters and Digits in First Graders. Child Development, 2019, 90, 1866-1874.	3.0	15
44	How and why do number-space associations co-vary in implicit and explicit magnitude processing tasks?. Journal of Numerical Cognition, 2017, 3, 182-211.	1.2	15
45	NASCO: A new method and program to generate dot arrays for non-symbolic number comparison tasks. Journal of Numerical Cognition, 2020, 6, 129-147.	1.2	15
46	Sixtyâ€ŧwelveÂ=ÂSeventyâ€ŧwo? A crossâ€linguistic comparison of children's number transcoding. British Journal of Developmental Psychology, 2016, 34, 461-468.	1.7	14
47	Units-first or tens-first: Does language matter when processing visually presented two-digit numbers?. Quarterly Journal of Experimental Psychology, 2020, 73, 726-738.	1.1	14
48	Speaking two languages with different number naming systems: What implications for magnitude judgments in bilinguals at different stages of language acquisition?. Cognitive Processing, 2016, 17, 225-241.	1.4	13
49	The importance of visuospatial abilities for verbal number skills in preschool: Adding spatial language to the equation. Journal of Experimental Child Psychology, 2021, 201, 104971.	1.4	13
50	How do different aspects of spatial skills relate to early arithmetic and number line estimation?. Journal of Numerical Cognition, 2017, 3, 309-343.	1.2	13
51	Sensitivity to spacing information increases more for the eye region than for the mouth region during childhood. International Journal of Behavioral Development, 2013, 37, 166-171.	2.4	11
52	Evidence for Individual Face Discrimination in Non-Face Selective Areas of the Visual Cortex in Acquired Prosopagnosia. Behavioural Neurology, 2008, 19, 75-79.	2.1	8
53	The Relationship Between the Benton Face Recognition Test and Electrophysiological Unfamiliar Face Individuation Response as Revealed by Fast Periodic Stimulation. Perception, 2020, 49, 210-221.	1.2	8
54	Measuring spontaneous and automatic processing of magnitude and parity information of Arabic digits by frequency-tagging EEG. Scientific Reports, 2020, 10, 22254.	3.3	8

CHRISTINE SCHILTZ

#	Article	IF	CITATIONS
55	MaGrid: A Language-Neutral Early Mathematical Training and Learning Application. International Journal of Emerging Technologies in Learning, 2018, 13, 4.	1.3	7
56	Learning mathematics with shackles: How lower reading comprehension in the language of mathematics instruction accounts for lower mathematics achievement in speakers of different home languages. Acta Psychologica, 2021, 221, 103456.	1.5	7
57	Developmental Changes in the Effect of Active Left and Right Head Rotation on Random Number Generation. Frontiers in Psychology, 2018, 9, 236.	2.1	6
58	Implicit and Explicit Number-Space Associations Differentially Relate to Interference Control in Young Adults With ADHD. Frontiers in Psychology, 2018, 9, 775.	2.1	6
59	Assessing Mathematical School Readiness. Frontiers in Psychology, 2019, 10, 1173.	2.1	6
60	Impact of Learning to Read in a Mixed Approach on Neural Tuning to Words in Beginning Readers. Frontiers in Psychology, 2019, 10, 3043.	2.1	6
61	Long-term relevance and interrelation of symbolic and non-symbolic abilities in mathematical-numerical development: Evidence from large-scale assessment data. Cognitive Development, 2021, 58, 101008.	1.3	6
62	A robust electrophysiological marker of spontaneous numerical discrimination. Scientific Reports, 2020, 10, 18376.	3.3	5
63	Canonical representations of fingers and dots trigger an automatic activation of number semantics: an EEG study on 10-year-old children. Neuropsychologia, 2021, 157, 107874.	1.6	5
64	Varying Stimulus Duration Reveals Consistent Neural Activity and Behavior for Human Face Individuation. Neuroscience, 2021, 472, 138-156.	2.3	5
65	Spatial skills first: The importance of mental rotation for arithmetic skill acquisition. Journal of Numerical Cognition, 2019, 5, 5-23.	1.2	5
66	Automatic integration of numerical formats examined with frequency-tagged EEG. Scientific Reports, 2021, 11, 21405.	3.3	5
67	When one-two-three beats two-one-three: Tracking the acquisition of the verbal number sequence. Psychonomic Bulletin and Review, 2020, 27, 122-129.	2.8	4
68	Taking Language out of the Equation: The Assessment of Basic Math Competence Without Language. Frontiers in Psychology, 2018, 9, 1076.	2.1	3
69	Hierarchical Development of Early Visual-Spatial Abilities – A Taxonomy Based Assessment Using the MaGrid App. Frontiers in Psychology, 2020, 11, 871.	2.1	3
70	Inhibition of return and attentional facilitation: Numbers can be counted in, letters tell a different story. Acta Psychologica, 2016, 163, 74-80.	1.5	2
71	Number line tasks and their relation to arithmetics in second to fourth graders. Journal of Numerical Cognition, 2021, 7, 20-41.	1.2	2
72	Horizontal tuning of face-specific processing from childhood to elderly adulthood. Journal of Vision, 2015, 15, 1189.	0.3	0

5

#	Article	IF	CITATIONS
73	High test-retest reliability of a neural index of rapid automatic discrimination of unfamiliar individual faces. Journal of Vision, 2019, 19, 136c.	0.3	0