List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2900415/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adapting Mechanical Characterization of a Biodegradable Polymer to Physiological Approach of Anterior Cruciate Ligament Functions. Irbm, 2022, 43, 39-48.	5.6	5
2	Correlating degradation of functionalized polycaprolactone fibers and fibronectin adsorption using atomic force microscopy. Polymer Degradation and Stability, 2022, 195, 109788.	5.8	3
3	Atomic force microscopy characterization of polyethylene terephthalate grafting with poly(styrene) Tj ETQq1 1 C).784314 r 2.6	gBT /Overloc
4	The effect of pNaSS grafting of knitted poly(ε-caprolactone) artificial ligaments on in vitro mineralization and in vivo osseointegration. Materialia, 2022, 21, 101331.	2.7	3
5	ANTERIOR CRUCIATE LIGAMENT REPAIR VIA SCAFFOLD-GUIDED GENE THERAPY. Osteoarthritis and Cartilage, 2022, 30, S178.	1.3	0
6	Influence of poly(styrene sodium sulfonate) grafted silicone breast implant's surface on the biological response and its mechanical properties. Materials Today Communications, 2022, 31, 103318.	1.9	2
7	Trends in Metal-Based Composite Biomaterials for Hard Tissue Applications. Jom, 2022, 74, 102-125.	1.9	3
8	Review of silicone surface modification techniques and coatings for antibacterial/antimicrobial applications to improve breast implant surfaces. Acta Biomaterialia, 2021, 121, 68-88.	8.3	53
9	Cover Image, Volume 138, Issue 17. Journal of Applied Polymer Science, 2021, 138, 50573.	2.6	0
10	Different realâ€ŧime degradation scenarios of functionalized poly(εâ€ɛaprolactone) for biomedical applications. Journal of Applied Polymer Science, 2021, 138, 50479.	2.6	15
11	Influence of spin finish on degradation, functionalization and long-term storage of polyethylene terephthalate fabrics dedicated to ligament prostheses. Scientific Reports, 2021, 11, 4258.	3.3	3
12	Biomaterial-assisted gene therapy for translational approaches to treat musculoskeletal disorders. Materials Today Advances, 2021, 9, 100126.	5.2	4
13	Genetically modified human bone marrow aspirates by rAAV mediated overexpression of sox9 and TGF-beta viapnass-grafted poly(e-caprolactone) film-guided delivery activates the chondrogenic activity upon implantation in human osteochondral defects. Osteoarthritis and Cartilage, 2021, 29, S194-S195.	1.3	0
14	Development of Direct Grafting on Cyclic Olefin Copolymers to Improve Hydrophilicity by Using Bioactive Polymers. Irbm, 2021, , .	5.6	0
15	Elastomeric Cardiowrap Scaffolds Functionalized with Mesenchymal Stem Cells-Derived Exosomes Induce a Positive Modulation in the Inflammatory and Wound Healing Response of Mesenchymal Stem Cell and Macrophage. Biomedicines, 2021, 9, 824.	3.2	19
16	pNaSS-Grafted PCL Film-Guided rAAV TGF-Î ² Gene Therapy Activates the Chondrogenic Activities in Human Bone Marrow Aspirates. Human Gene Therapy, 2021, 32, 895-906.	2.7	4
17	Fibronectin adsorption on polystyrene sulfonate-grafted polyester using atomic force microscope. Biointerphases, 2021, 16, 051003.	1.6	4
18	Biomaterial-Guided Recombinant Adeno-associated Virus Delivery from Poly(Sodium Styrene) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 67 1 12

Engineering - Part A, 2020, 26, 450-459.

#	Article	IF	CITATIONS
19	Nanostructured titanium alloy surfaces for enhanced osteoblast response: A combination of morphology and chemistry. Surface and Coatings Technology, 2020, 383, 125226.	4.8	20
20	Chondrogenic differentiation of human bone marrow aspirates enhanced by overexpression of RAAV- SOX9 and TGF-B upon vector delivery via pnass-grafted microstructured poly(E-caprolactone) scaffolds. Osteoarthritis and Cartilage, 2020, 28, S520-S521.	1.3	2
21	Kinetic and degradation reactions of poly (sodium 4-styrene sulfonate) grafting "from―ozonized poly (ϵ-caprolactone) surfaces. Polymer Degradation and Stability, 2020, 176, 109154.	5.8	16
22	A simple way to graft a bioactive polymer – Polystyrene sodium sulfonate on silicone surfaces. European Polymer Journal, 2020, 128, 109608.	5.4	11
23	Microstructure and biological evaluation of nanocrystalline diamond films deposited on titanium substrates using distributed antenna array microwave system. Diamond and Related Materials, 2020, 103, 107700.	3.9	3
24	Thiol-Poly(Sodium Styrene Sulfonate) (PolyNaSS-SH) Gold Complexes: From a Chemical Design to a One-Step Synthesis of Hybrid Gold Nanoparticles and Their Interaction with Human Proteins. ACS Omega, 2020, 5, 8137-8145.	3.5	4
25	Long-term hydrolytic degradation study of polycaprolactone films and fibers grafted with poly(sodium styrene sulfonate): Mechanism study and cell response. Biointerphases, 2020, 15, 061006.	1.6	20
26	Analysis of early cellular responses of anterior cruciate ligament fibroblasts seeded on different molecular weight polycaprolactone films functionalized by a bioactive poly(sodium styrene) Tj ETQq0 0 0 rgBT	/Ov er.k ock :	10 Tef 50 457 1
27	Electrospun Poly(ε-caprolactone) Fiber Scaffolds Functionalized by the Covalent Grafting of a Bioactive Polymer: Surface Characterization and Influence on in Vitro Biological Response. ACS Omega, 2019, 4, 17194-17208.	3.5	23
28	Overexpression of rAAV-SOX9 and TGF-B in human bone marrow aspirates upon vector delivery via pNaSS-coated poly(e-caprolactone) scaffolds. Osteoarthritis and Cartilage, 2019, 27, S149-S150.	1.3	0
29	Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomaterialia, 2019, 83, 37-54.	8.3	683
30	Feasibility Study of the Elaboration of a Biodegradable and Bioactive Ligament Made of Poly(Îμ-caprolactone)-pNaSS Grafted Fibers for the Reconstruction of Anterior Cruciate Ligament: In Vivo Experiment. Irbm, 2019, 40, 38-44.	5.6	15
31	Grafting of Bioactive Polymers with Various Architectures: A Versatile Tool for Preparing Antibacterial Infection and Biocompatible Surfaces. ACS Applied Materials & Interfaces, 2018, 10, 1480-1491.	8.0	31
32	Impact of chemical and physical treatments on the mechanical properties of poly(Îμ-caprolactone) fibers bundles for the anterior cruciate ligament reconstruction. PLoS ONE, 2018, 13, e0205722.	2.5	13
33	Genetic modification of human bone marrow aspirates viaÂdelivery of rAAV vectors coated on pNaSS-grafted poly(ε-caprolactone) scaffolds. Osteoarthritis and Cartilage, 2018, 26, S134-S135.	1.3	1
34	A Simple Method to Functionalize PCL Surface by Grafting Bioactive Polymers Using UV Irradiation. Irbm, 2018, 39, 268-278.	5.6	22
35	Controlled release of gene therapy constructs from solid scaffolds for therapeutic applications in orthopedics. Discovery Medicine, 2018, 25, 195-203.	0.5	5
36	Grafting of architecture controlled poly(styrene sodium sulfonate) onto titanium surfaces using bio-adhesive molecules: Surface characterization and biological properties. Biointerphases, 2017, 12, 02C418.	1.6	21

#	Article	IF	CITATIONS
37	Titanium alloy surface coatings using poly(sodium styrene sulfonate) and poly(acrylic acid). Bio-Medical Materials and Engineering, 2017, 27, 657-668.	0.6	Ο
38	Bone tissue response induced by bioactive polymer functionalized Ti6Al4V surfaces: In vitro and in vivo study. Journal of Colloid and Interface Science, 2017, 491, 44-54.	9.4	26
39	Functionalization of New Biocompatible Titanium Alloys with Harmonic Structure Design by Using UV Irradiation. Irbm, 2017, 38, 190-197.	5.6	6
40	Highly crystalline sphere and rod-shaped TiO 2 nanoparticles: A facile route to bio-polymer grafting. Frontiers in Laboratory Medicine, 2017, 1, 217-223.	1.7	10
41	Competitive Adsorption of Plasma Proteins Using a Quartz Crystal Microbalance. ACS Applied Materials & Interfaces, 2016, 8, 13207-13217.	8.0	39
42	Cell Spreading and Morphology Variations as a Result of Protein Adsorption and Bioactive Coating on Ti6Al4V Surfaces. Irbm, 2016, 37, 165-171.	5.6	10
43	Improved proliferation and osteogenic differentiation of human mesenchymal stem cells on a titanium biomaterial grafted with poly(sodium styrene sulphonate) and coated with a platelet-rich plasma proteins biofilm. Journal of Bioactive and Compatible Polymers, 2016, 31, 568-582.	2.1	2
44	Grafting bioactive polymers onto titanium implants by UV irradiation. RSC Advances, 2016, 6, 13766-13771.	3.6	24
45	Biotribocorrosion (triboâ€electrochemical) characterization of anodized titanium biomaterial containing calcium and phosphorus before and after osteoblastic cell culture. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 661-669.	3.4	20
46	Protein selective adsorption properties of a polyethylene terephtalate artificial ligament grafted with poly(sodium styrene sulfonate) (polyNaSS): correlation with physicochemical parameters of proteins. Biomedical Materials (Bristol), 2015, 10, 065021.	3.3	10
47	Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces. Journal of Materials Science: Materials in Medicine, 2015, 26, 261.	3.6	19
48	Contribution of fibronectin and vitronectin to the adhesion and morphology of MC3T3-E1 osteoblastic cells to poly(NaSS) grafted Ti6Al4V. Acta Biomaterialia, 2015, 28, 225-233.	8.3	59
49	The grafting of a thin layer of poly(sodium styrene sulfonate) onto poly(ε-caprolactone) surface can enhance fibroblast behavior. Journal of Materials Science: Materials in Medicine, 2015, 26, 206.	3.6	28
50	Characterization of a synthetic bioactive polymer by nonlinear optical microscopy. Biomedical Optics Express, 2014, 5, 149.	2.9	4
51	Grafting titanium nitride surfaces with sodium styrene sulfonate thin films. Biointerphases, 2014, 9, 031001.	1.6	6
52	Role of protein environment and bioactive polymer grafting in the S. epidermidis response to titanium alloy for biomedical applications. Materials Science and Engineering C, 2014, 45, 176-183.	7.3	26
53	Poly(NaSS) Functionalization Modulates the Conformation of Fibronectin and Collagen Type I To Enhance Osteoblastic Cell Attachment onto Ti6Al4V. Langmuir, 2014, 30, 9477-9483.	3.5	41
54	Sulfonate groups grafted on Ti6Al4V favor MC3T3-E1 cell performance in serum free medium conditions. Materials Science and Engineering C, 2014, 39, 196-202.	7.3	28

#	Article	IF	CITATIONS
55	Competitive Adsorption of Albumin, Fibronectin and Collagen Type I on Different Biomaterial Surfaces: A QCM-D Study. IFMBE Proceedings, 2014, , 1597-1600.	0.3	3
56	Biomechanical evaluation of a bioactive artificial anterior cruciate ligament. Advances in Biomechanics and Applications, 2014, 1, 239-252.	0.2	1
57	PolyNaSS grafting on titanium surfaces enhances osteoblast differentiation and inhibits Staphylococcus aureus adhesion. Journal of Materials Science: Materials in Medicine, 2013, 24, 1745-1754.	3.6	26
58	Presence of sulfonate groups on Ti6Al4V surfaces enhances osteoblastic attachment strength at the interface. Irbm, 2013, 34, 371-375.	5.6	8
59	Biological and Biomechanical Evaluation of the Ligament Advanced Reinforcement System (LARS AC) in a Sheep Model of Anterior Cruciate Ligament Replacement: A 3-Month and 12-Month Study. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2013, 29, 1079-1088.	2.7	54
60	Controlled cell Adhesion and aCtivity onto TAl6V TItanium alloy by grafting of the SURFace: Elaboration of orthopaedic implants capable of preventing joint prosthesis infection. Irbm, 2013, 34, 180-185.	5.6	8
61	The effect of polystyrene sodium sulfonate grafting on polyethylene terephthalate artificial ligaments on inAvitro mineralisation and inAvivo bone tissue integration. Biomaterials, 2013, 34, 7048-7063.	11.4	72
62	Properties of experimental urethane dimethacrylate-based dental resin composite blocks obtained via thermo-polymerization under high pressure. Dental Materials, 2013, 29, 535-541.	3.5	67
63	PolyNaSS bioactivation of LARS artificial ligament promotes human ligament fibroblast colonisation in vitro. Bio-Medical Materials and Engineering, 2013, 23, 289-297.	0.6	8
64	The osteogenic differentiation improvement of human mesenchymal stem cells on titanium grafted with polyNaSS bioactive polymer. Journal of Biomedical Materials Research - Part A, 2013, 101A, 582-589.	4.0	18
65	Increasing the bioactivity of elastomeric poly(ε-caprolactone) scaffolds for use in tissue engineering. Bio-Medical Materials and Engineering, 2013, 23, 281-288.	0.6	8
66	Resin composite blocks via high-pressure high-temperature polymerization. Dental Materials, 2012, 28, 529-534.	3.5	195
67	Le greffage radicalaire de polymères bioactifs sur le titane pour prévenir l'infection sur prothèse articulaire. Irbm, 2011, 32, 322-325.	5.6	2
68	Characterization of Poly(sodium styrene sulfonate) Thin Films Grafted from Functionalized Titanium Surfaces. Langmuir, 2011, 27, 13104-13112.	3.5	35
69	Development of proteomic tools to study protein adsorption on a biomaterial, titanium grafted with poly(sodium styrene sulfonate). Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 3681-3687.	2.3	27
70	Effect of blasting treatment and Fn coating on MG63 adhesion and differentiation on titanium: a gene expression study using real-time RT-PCR. Journal of Materials Science: Materials in Medicine, 2011, 22, 617-627.	3.6	26
71	An alternative quantitative acoustical and electrical method for detection of cell adhesion process in realâ€time. Biotechnology and Bioengineering, 2011, 108, 947-962.	3.3	17
72	LigartÂ: ligament synthétique «Âbioactif» et «Âbiointégrable»Âpermettant la réhabilitation rapide patientÂ: greffage chimique, évaluations biologiques in vivo, expérimentation animale, étude préclinique. Irbm, 2011, 32, 118-122.	du 5.6	14

#	Article	IF	CITATIONS
73	Inhibition of angiogenesis in vitro with soluble copolymers monitored with a quartz crystal resonator. Irbm, 2010, 31, 271-279.	5.6	3
74	Bioactive polymer grafting onto titanium alloy surfaces. Acta Biomaterialia, 2010, 6, 667-675.	8.3	74
75	A bioactive polymer grafted on titanium oxide layer obtained by electrochemical oxidation. Improvement of cell response. Journal of Materials Science: Materials in Medicine, 2010, 21, 655-663.	3.6	28
76	Bone tissue response to titanium implant surfaces modified with carboxylate and sulfonate groups. Journal of Materials Science: Materials in Medicine, 2010, 21, 707-715.	3.6	28
77	Synthesis and in vitro evaluation of gelatin/hydroxyapatite graft copolymers to form bionanocomposites. International Journal of Biological Macromolecules, 2010, 46, 310-316.	7.5	31
78	Modélisation de l'effet de la rugosité sur l'adhésion d'ostéoblastes : application au titane. N Et Techniques, 2010, 98, 49-57.	laterjaux	1
79	Bioactive polymer coatings to improve bone repair. , 2009, , 309-323.		3
80	Polymères bactériostatiquesÂ: une nouvelle approche pour les ciments orthopédiques. Irbm, 2009, 30, 205-207.	5.6	1
81	Évaluation clinique et biologique d'un ligament synthétique bioactif chez la brebis. Irbm, 2009, 30, 153-155.	5.6	6
82	A new approach to graft bioactive polymer on titanium implants: Improvement of MG 63 cell differentiation onto this coating. Acta Biomaterialia, 2009, 5, 124-133.	8.3	91
83	Synthèse et greffage de polymères bioactifs sur des surfaces en titane pour favoriser l'ostéointégration. Irbm, 2008, 29, 1-6.	5.6	9
84	Functionalization of biomaterials for joint implant application. Bio-Medical Materials and Engineering, 2008, 18, 237-239.	0.6	1
85	Functionalization of biomaterials for joint implant application. Bio-Medical Materials and Engineering, 2008, 18, 237-9.	0.6	0
86	Grafting of bioactive polymers onto titanium surfaces and human osteoblasts response. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 5119-22.	0.5	8
87	Morphology and adhesion of human fibroblast cells cultured on bioactive polymer grafted ligament prosthesis. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 5115-8.	0.5	7
88	Bioactive Poly(ethylene terephthalate) Fibers and Fabrics:  Grafting, Chemical Characterization, and Biological Assessment. Biomacromolecules, 2007, 8, 3317-3325.	5.4	57
89	Ability of carbazole salts, inhibitors of Alzheimer β-amyloid fibril formation, to cross cellular membranes. European Journal of Pharmacology, 2007, 559, 124-131.	3.5	25
90	Radical Graft Polymerization of Styrene Sulfonate on Poly(ethylene terephthalate) Films for ACL Applications: "Grafting From―and Chemical Characterization. Biomacromolecules, 2006, 7, 755-760.	5.4	54

#	Article	IF	CITATIONS
91	Osteoblast functions on functionalized PMMA-based polymers exhibiting Staphylococcus aureus adhesion inhibition. Biomaterials, 2006, 27, 3912-3919.	11.4	58
92	« Les biomatériaux inhibiteurs de l'adhérence et de la prolifération bactérienneÂ: un enjeu pour la prévention des infections sur matériel prothétique ». IRBM News, 2005, 26, 183-191.	0.1	8
93	Surface modification of polystyrene particles for specific antibody adsorption. Polymer, 2005, 46, 1277-1285.	3.8	24
94	Monitoring cell adhesion processes on bioactive polymers with the quartz crystal resonator technique. Biomaterials, 2005, 26, 4197-4205.	11.4	35
95	Copolymères solubles inhibiteurs de l'angiogenèse in vitro. IRBM News, 2005, 26, 267-269.	0.1	2
96	Surface Modification of Silicone Intraocular Implants To Inhibit Cell Proliferation. Biomacromolecules, 2005, 6, 2630-2637.	5.4	32
97	Vitronectin is significant in the adhesion of lens epithelial cells to PMMA polymers. Journal of Biomedical Materials Research - Part A, 2004, 69A, 469-476.	4.0	15
98	Surface modification of hydrogel intraocular lenses to prevent cell proliferation. Journal of Applied Biomaterials and Biomechanics, 2004, 2, 183-90.	0.4	2
99	Polystyrene derivatives substituted with arginine interact with Babanki (Togaviridae) and Kedougou (Flaviviridae) viruses. Journal of Medical Virology, 2003, 69, 503-509.	5.0	3
100	Alternative Intracellular Signaling Mechanism Involved in the Inhibitory Biological Response of Functionalized PMMA-Based Polymers. Biomacromolecules, 2003, 4, 766-771.	5.4	31
101	Assessment of fibronectin conformation adsorbed to polytetrafluoroethylene surfaces from serum protein mixtures and correlation to support of cell attachment in culture. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 973-988.	3.5	44
102	Bioactive polymers grafted on silicone to prevent Staphylococcus aureus prosthesis adherence: in vitro and in vivo studies. Journal of Applied Biomaterials and Biomechanics, 2003, 1, 178-85.	0.4	5
103	Biomimetic Poly(methyl methacrylate)-Based Terpolymers:Â Modulation of Bacterial Adhesion Effect. Biomacromolecules, 2002, 3, 63-68.	5.4	29
104	Modulating Fibroblast Cell Proliferation with Functionalized Poly(methyl methacrylate) Based Copolymers: Chemical Composition and Monomer Distribution Effect. Biomacromolecules, 2002, 3, 51-56.	5.4	58
105	Modulation of Staphylococcus aureus adhesion by biofunctional copolymers derived from polystyrene. IRBM News, 2002, 23, 102-108.	0.1	8
106	Terpolymerization of methyl methacrylate, poly(ethylene glycol) methyl ether methacrylate or poly(ethylene glycol) ethyl ether methacrylate with methacrylic acid and sodium styrene sulfonate: determination of the reactivity ratios. European Polymer Journal, 2002, 38, 439-444.	5.4	25
107	Terpolymerization of 3-methacryloxypropyl tris(trimethylsiloxy)silane, methacrylic acid and dimethyl octyl ammonium styrene sulfonate: determination of the reactivity ratios. European Polymer Journal, 2000, 36, 2365-2369.	5.4	7
108	Inhibition of lens epithelial cell proliferation by substituted PMMA intraocular lenses. Graefe's Archive for Clinical and Experimental Ophthalmology, 2000, 238, 696-700.	1.9	10

#	Article	IF	CITATIONS
109	Biospecific polymers: recognition of phosphorylated polystyrene derivatives by anti-DNA antibodies. Journal of Biomaterials Science, Polymer Edition, 1997, 8, 533-544.	3.5	11
110	Biospecific interactions of vitamin K-dependent factors with phospholipid-like polystyrene derivatives. Biomaterials, 1997, 18, 1077-1084.	11.4	5
111	Biospecific interactions of Vitamin K-dependent factors with phospholipid-like polystyrene derivatives. Biomaterials, 1996, 17, 823-829.	11.4	5
112	Silicone derivatives for contact lenses: Functionalization, chemical characterization, and cell compatibility assessment. Journal of Biomaterials Science, Polymer Edition, 1996, 7, 265-275.	3.5	7
113	DNA-like and phospholipid-like phosphorylated polystyrenes: Characterization, distribution of functional groups, and calcium complexation properties. Journal of Applied Polymer Science, 1994, 52, 91-97.	2.6	13
114	Phosphorylated polystyrene resins in high-performance ion-exchange chromatography. Journal of Chromatography A, 1992, 589, 87-91.	3.7	4
115	Chemical modifications of insoluble polystyrene derivatives. Journal of Applied Polymer Science, 1992, 46, 1151-1158.	2.6	10
116	Heparin-like tubings. Biomaterials, 1988, 9, 413-418.	11.4	20
117	Control and isotopic quantification of affinity of antithrombin III for heparin-like surfaces. Biomaterials, 1988, 9, 62-65.	11.4	15
118	Heparin-like tubings. Biomaterials, 1988, 9, 230-234.	11.4	8
119	Heparin-like tubings I. Preparation, characterization and biological in vitro activity assessment. Biomaterials, 1988, 9, 145-149.	11.4	22
120	Use of a quartz crystal resonator to study the cell adhesion process. , 0, , .		0
121	Double Functionalization for the Design of Innovative Craniofacial Prostheses. Jom, 0, , .	1.9	3