Veronique Migonney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2900415/publications.pdf

Version: 2024-02-01

201674 189892 2,945 121 27 50 citations h-index g-index papers 140 140 140 3199 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomaterialia, 2019, 83, 37-54.	8.3	683
2	Resin composite blocks via high-pressure high-temperature polymerization. Dental Materials, 2012, 28, 529-534.	3.5	195
3	A new approach to graft bioactive polymer on titanium implants: Improvement of MG 63 cell differentiation onto this coating. Acta Biomaterialia, 2009, 5, 124-133.	8.3	91
4	Bioactive polymer grafting onto titanium alloy surfaces. Acta Biomaterialia, 2010, 6, 667-675.	8.3	74
5	The effect of polystyrene sodium sulfonate grafting on polyethylene terephthalate artificial ligaments on inAvitro mineralisation and inAvivo bone tissue integration. Biomaterials, 2013, 34, 7048-7063.	11.4	72
6	Properties of experimental urethane dimethacrylate-based dental resin composite blocks obtained via thermo-polymerization under high pressure. Dental Materials, 2013, 29, 535-541.	3.5	67
7	Contribution of fibronectin and vitronectin to the adhesion and morphology of MC3T3-E1 osteoblastic cells to poly(NaSS) grafted Ti6Al4V. Acta Biomaterialia, 2015, 28, 225-233.	8.3	59
8	Modulating Fibroblast Cell Proliferation with Functionalized Poly(methyl methacrylate) Based Copolymers: Chemical Composition and Monomer Distribution Effect. Biomacromolecules, 2002, 3, 51-56.	5.4	58
9	Osteoblast functions on functionalized PMMA-based polymers exhibiting Staphylococcus aureus adhesion inhibition. Biomaterials, 2006, 27, 3912-3919.	11.4	58
10	Bioactive Poly(ethylene terephthalate) Fibers and Fabrics:  Grafting, Chemical Characterization, and Biological Assessment. Biomacromolecules, 2007, 8, 3317-3325.	5.4	57
11	Radical Graft Polymerization of Styrene Sulfonate on Poly(ethylene terephthalate) Films for ACL Applications: "Grafting From―and Chemical Characterization. Biomacromolecules, 2006, 7, 755-760.	5.4	54
12	Biological and Biomechanical Evaluation of the Ligament Advanced Reinforcement System (LARS AC) in a Sheep Model of Anterior Cruciate Ligament Replacement: A 3-Month and 12-Month Study. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2013, 29, 1079-1088.	2.7	54
13	Review of silicone surface modification techniques and coatings for antibacterial/antimicrobial applications to improve breast implant surfaces. Acta Biomaterialia, 2021, 121, 68-88.	8.3	53
14	Assessment of fibronectin conformation adsorbed to polytetrafluoroethylene surfaces from serum protein mixtures and correlation to support of cell attachment in culture. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 973-988.	3.5	44
15	Poly(NaSS) Functionalization Modulates the Conformation of Fibronectin and Collagen Type I To Enhance Osteoblastic Cell Attachment onto Ti6Al4V. Langmuir, 2014, 30, 9477-9483.	3.5	41
16	Competitive Adsorption of Plasma Proteins Using a Quartz Crystal Microbalance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13207-13217.	8.0	39
17	Monitoring cell adhesion processes on bioactive polymers with the quartz crystal resonator technique. Biomaterials, 2005, 26, 4197-4205.	11.4	35
18	Characterization of Poly(sodium styrene sulfonate) Thin Films Grafted from Functionalized Titanium Surfaces. Langmuir, 2011, 27, 13104-13112.	3.5	35

#	Article	IF	CITATIONS
19	Surface Modification of Silicone Intraocular Implants To Inhibit Cell Proliferation. Biomacromolecules, 2005, 6, 2630-2637.	5.4	32
20	Alternative Intracellular Signaling Mechanism Involved in the Inhibitory Biological Response of Functionalized PMMA-Based Polymers. Biomacromolecules, 2003, 4, 766-771.	5.4	31
21	Synthesis and in vitro evaluation of gelatin/hydroxyapatite graft copolymers to form bionanocomposites. International Journal of Biological Macromolecules, 2010, 46, 310-316.	7.5	31
22	Grafting of Bioactive Polymers with Various Architectures: A Versatile Tool for Preparing Antibacterial Infection and Biocompatible Surfaces. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1480-1491.	8.0	31
23	Biomimetic Poly(methyl methacrylate)-Based Terpolymers:Â Modulation of Bacterial Adhesion Effect. Biomacromolecules, 2002, 3, 63-68.	5.4	29
24	A bioactive polymer grafted on titanium oxide layer obtained by electrochemical oxidation. Improvement of cell response. Journal of Materials Science: Materials in Medicine, 2010, 21, 655-663.	3.6	28
25	Bone tissue response to titanium implant surfaces modified with carboxylate and sulfonate groups. Journal of Materials Science: Materials in Medicine, 2010, 21, 707-715.	3.6	28
26	Sulfonate groups grafted on Ti6Al4V favor MC3T3-E1 cell performance in serum free medium conditions. Materials Science and Engineering C, 2014, 39, 196-202.	7.3	28
27	The grafting of a thin layer of poly(sodium styrene sulfonate) onto poly(ε-caprolactone) surface can enhance fibroblast behavior. Journal of Materials Science: Materials in Medicine, 2015, 26, 206.	3.6	28
28	Development of proteomic tools to study protein adsorption on a biomaterial, titanium grafted with poly(sodium styrene sulfonate). Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 3681-3687.	2.3	27
29	Effect of blasting treatment and Fn coating on MG63 adhesion and differentiation on titanium: a gene expression study using real-time RT-PCR. Journal of Materials Science: Materials in Medicine, 2011, 22, 617-627.	3.6	26
30	PolyNaSS grafting on titanium surfaces enhances osteoblast differentiation and inhibits Staphylococcus aureus adhesion. Journal of Materials Science: Materials in Medicine, 2013, 24, 1745-1754.	3.6	26
31	Role of protein environment and bioactive polymer grafting in the S. epidermidis response to titanium alloy for biomedical applications. Materials Science and Engineering C, 2014, 45, 176-183.	7.3	26
32	Bone tissue response induced by bioactive polymer functionalized Ti6Al4V surfaces: In vitro and in vivo study. Journal of Colloid and Interface Science, 2017, 491, 44-54.	9.4	26
33	Terpolymerization of methyl methacrylate, poly(ethylene glycol) methyl ether methacrylate or poly(ethylene glycol) ethyl ether methacrylate with methacrylic acid and sodium styrene sulfonate: determination of the reactivity ratios. European Polymer Journal, 2002, 38, 439-444.	5.4	25
34	Ability of carbazole salts, inhibitors of Alzheimer \hat{l}^2 -amyloid fibril formation, to cross cellular membranes. European Journal of Pharmacology, 2007, 559, 124-131.	3.5	25
35	Surface modification of polystyrene particles for specific antibody adsorption. Polymer, 2005, 46, 1277-1285.	3.8	24
36	Grafting bioactive polymers onto titanium implants by UV irradiation. RSC Advances, 2016, 6, 13766-13771.	3.6	24

#	Article	IF	CITATIONS
37	Electrospun Poly(ε-caprolactone) Fiber Scaffolds Functionalized by the Covalent Grafting of a Bioactive Polymer: Surface Characterization and Influence on in Vitro Biological Response. ACS Omega, 2019, 4, 17194-17208.	3.5	23
38	Heparin-like tubings I. Preparation, characterization and biological in vitro activity assessment. Biomaterials, 1988, 9, 145-149.	11.4	22
39	A Simple Method to Functionalize PCL Surface by Grafting Bioactive Polymers Using UV Irradiation. Irbm, 2018, 39, 268-278.	5.6	22
40	Grafting of architecture controlled poly(styrene sodium sulfonate) onto titanium surfaces using bio-adhesive molecules: Surface characterization and biological properties. Biointerphases, 2017, 12, 02C418.	1.6	21
41	Heparin-like tubings. Biomaterials, 1988, 9, 413-418.	11.4	20
42	Biotribocorrosion (triboâ€electrochemical) characterization of anodized titanium biomaterial containing calcium and phosphorus before and after osteoblastic cell culture. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 661-669.	3.4	20
43	Nanostructured titanium alloy surfaces for enhanced osteoblast response: A combination of morphology and chemistry. Surface and Coatings Technology, 2020, 383, 125226.	4.8	20
44	Long-term hydrolytic degradation study of polycaprolactone films and fibers grafted with poly(sodium styrene sulfonate): Mechanism study and cell response. Biointerphases, 2020, 15, 061006.	1.6	20
45	Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces. Journal of Materials Science: Materials in Medicine, 2015, 26, 261.	3.6	19
46	Elastomeric Cardiowrap Scaffolds Functionalized with Mesenchymal Stem Cells-Derived Exosomes Induce a Positive Modulation in the Inflammatory and Wound Healing Response of Mesenchymal Stem Cell and Macrophage. Biomedicines, 2021, 9, 824.	3.2	19
47	The osteogenic differentiation improvement of human mesenchymal stem cells on titanium grafted with polyNaSS bioactive polymer. Journal of Biomedical Materials Research - Part A, 2013, 101A, 582-589.	4.0	18
48	An alternative quantitative acoustical and electrical method for detection of cell adhesion process in realâ€time. Biotechnology and Bioengineering, 2011, 108, 947-962.	3.3	17
49	Kinetic and degradation reactions of poly (sodium 4-styrene sulfonate) grafting "from―ozonized poly (Ïμ-caprolactone) surfaces. Polymer Degradation and Stability, 2020, 176, 109154.	5. 8	16
50	Control and isotopic quantification of affinity of antithrombin III for heparin-like surfaces. Biomaterials, 1988, 9, 62-65.	11.4	15
51	Vitronectin is significant in the adhesion of lens epithelial cells to PMMA polymers. Journal of Biomedical Materials Research - Part A, 2004, 69A, 469-476.	4.0	15
52	Feasibility Study of the Elaboration of a Biodegradable and Bioactive Ligament Made of Poly(ε-caprolactone)-pNaSS Grafted Fibers for the Reconstruction of Anterior Cruciate Ligament: In Vivo Experiment. Irbm, 2019, 40, 38-44.	5.6	15
53	Different realâ€time degradation scenarios of functionalized poly(εâ€caprolactone) for biomedical applications. Journal of Applied Polymer Science, 2021, 138, 50479.	2.6	15
54	LigartÂ: ligament synthétique «Âbioactif» et «Âbiointégrable»Âpermettant la réhabilitation rapide patientÂ: greffage chimique, évaluations biologiques in vivo, expérimentation animale, étude préclinique. Irbm, 2011, 32, 118-122.	du 5.6	14

#	Article	IF	CITATIONS
55	DNA-like and phospholipid-like phosphorylated polystyrenes: Characterization, distribution of functional groups, and calcium complexation properties. Journal of Applied Polymer Science, 1994, 52, 91-97.	2.6	13
56	Impact of chemical and physical treatments on the mechanical properties of poly($\hat{l}\mu$ -caprolactone) fibers bundles for the anterior cruciate ligament reconstruction. PLoS ONE, 2018, 13, e0205722.	2.5	13
57	Biomaterial-Guided Recombinant Adeno-associated Virus Delivery from Poly(Sodium Styrene) Tj ETQq1 1 0.7843. Engineering - Part A, 2020, 26, 450-459.	14 rgBT /C 3.1	overlock 10 Tf 12
58	Biospecific polymers: recognition of phosphorylated polystyrene derivatives by anti-DNA antibodies. Journal of Biomaterials Science, Polymer Edition, 1997, 8, 533-544.	3.5	11
59	A simple way to graft a bioactive polymer – Polystyrene sodium sulfonate on silicone surfaces. European Polymer Journal, 2020, 128, 109608.	5.4	11
60	Chemical modifications of insoluble polystyrene derivatives. Journal of Applied Polymer Science, 1992, 46, 1151-1158.	2.6	10
61	Inhibition of lens epithelial cell proliferation by substituted PMMA intraocular lenses. Graefe's Archive for Clinical and Experimental Ophthalmology, 2000, 238, 696-700.	1.9	10
62	Protein selective adsorption properties of a polyethylene terephtalate artificial ligament grafted with poly(sodium styrene sulfonate) (polyNaSS): correlation with physicochemical parameters of proteins. Biomedical Materials (Bristol), 2015, 10, 065021.	3.3	10
63	Cell Spreading and Morphology Variations as a Result of Protein Adsorption and Bioactive Coating on Ti6Al4V Surfaces. Irbm, 2016, 37, 165-171.	5.6	10
64	Highly crystalline sphere and rod-shaped TiO 2 nanoparticles: A facile route to bio-polymer grafting. Frontiers in Laboratory Medicine, 2017, 1, 217-223.	1.7	10
65	Synthèse et greffage de polymères bioactifs sur des surfaces en titane pour favoriser l'ostéointégration. lrbm, 2008, 29, 1-6.	5.6	9
66	Heparin-like tubings. Biomaterials, 1988, 9, 230-234.	11.4	8
67	Modulation of Staphylococcus aureus adhesion by biofunctional copolymers derived from polystyrene. IRBM News, 2002, 23, 102-108.	0.1	8
68	« Les biomatériaux inhibiteurs de l'adhérence et de la prolifération bactérienneÂ: un enjeu pour la prévention des infections sur matériel prothétique ». IRBM News, 2005, 26, 183-191.	0.1	8
69	Grafting of bioactive polymers onto titanium surfaces and human osteoblasts response. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 5119-22.	0.5	8
70	Presence of sulfonate groups on Ti6Al4V surfaces enhances osteoblastic attachment strength at the interface. Irbm, 2013, 34, 371-375.	5.6	8
71	Controlled cell Adhesion and aCtivity onto TAI6V TItanium alloy by grafting of the SURFace: Elaboration of orthopaedic implants capable of preventing joint prosthesis infection. Irbm, 2013, 34, 180-185.	5.6	8
72	PolyNaSS bioactivation of LARS artificial ligament promotes human ligament fibroblast colonisation in vitro. Bio-Medical Materials and Engineering, 2013, 23, 289-297.	0.6	8

#	Article	IF	CITATIONS
73	Increasing the bioactivity of elastomeric poly($\hat{l}\mu$ -caprolactone) scaffolds for use in tissue engineering. Bio-Medical Materials and Engineering, 2013, 23, 281-288.	0.6	8
74	Silicone derivatives for contact lenses: Functionalization, chemical characterization, and cell compatibility assessment. Journal of Biomaterials Science, Polymer Edition, 1996, 7, 265-275.	3.5	7
75	Terpolymerization of 3-methacryloxypropyl tris(trimethylsiloxy)silane, methacrylic acid and dimethyl octyl ammonium styrene sulfonate: determination of the reactivity ratios. European Polymer Journal, 2000, 36, 2365-2369.	5.4	7
76	Morphology and adhesion of human fibroblast cells cultured on bioactive polymer grafted ligament prosthesis. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 5115-8.	0.5	7
77	Évaluation clinique et biologique d'un ligament synthétique bioactif chez la brebis. Irbm, 2009, 30, 153-155.	5.6	6
78	Grafting titanium nitride surfaces with sodium styrene sulfonate thin films. Biointerphases, 2014, 9, 031001.	1.6	6
79	Functionalization of New Biocompatible Titanium Alloys with Harmonic Structure Design by Using UV Irradiation. Irbm, 2017, 38, 190-197.	5.6	6
80	Analysis of early cellular responses of anterior cruciate ligament fibroblasts seeded on different molecular weight polycaprolactone films functionalized by a bioactive poly(sodium styrene) Tj ETQq0 0 0 rgBT /	Ovenkock 1	0 Tef 50 457 T
81	Biospecific interactions of Vitamin K-dependent factors with phospholipid-like polystyrene derivatives. Biomaterials, 1996, 17, 823-829.	11.4	5
82	Biospecific interactions of vitamin K-dependent factors with phospholipid-like polystyrene derivatives. Biomaterials, 1997, 18, 1077-1084.	11.4	5
83	Adapting Mechanical Characterization of a Biodegradable Polymer to Physiological Approach of Anterior Cruciate Ligament Functions. Irbm, 2022, 43, 39-48.	5.6	5
84	Bioactive polymers grafted on silicone to prevent Staphylococcus aureus prosthesis adherence: in vitro and in vivo studies. Journal of Applied Biomaterials and Biomechanics, 2003, 1, 178-85.	0.4	5
85	Controlled release of gene therapy constructs from solid scaffolds for therapeutic applications in orthopedics. Discovery Medicine, 2018, 25, 195-203.	0.5	5
86	Phosphorylated polystyrene resins in high-performance ion-exchange chromatography. Journal of Chromatography A, 1992, 589, 87-91.	3.7	4
87	Characterization of a synthetic bioactive polymer by nonlinear optical microscopy. Biomedical Optics Express, 2014, 5, 149.	2.9	4
88	Thiol-Poly(Sodium Styrene Sulfonate) (PolyNaSS-SH) Gold Complexes: From a Chemical Design to a One-Step Synthesis of Hybrid Gold Nanoparticles and Their Interaction with Human Proteins. ACS Omega, 2020, 5, 8137-8145.	3.5	4
89	Biomaterial-assisted gene therapy for translational approaches to treat musculoskeletal disorders. Materials Today Advances, 2021, 9, 100126.	5.2	4
90	pNaSS-Grafted PCL Film-Guided rAAV TGF- \hat{l}^2 Gene Therapy Activates the Chondrogenic Activities in Human Bone Marrow Aspirates. Human Gene Therapy, 2021, 32, 895-906.	2.7	4

#	Article	IF	Citations
91	Fibronectin adsorption on polystyrene sulfonate-grafted polyester using atomic force microscope. Biointerphases, 2021, 16, 051003.	1.6	4
92	Polystyrene derivatives substituted with arginine interact with Babanki (Togaviridae) and Kedougou (Flaviviridae) viruses. Journal of Medical Virology, 2003, 69, 503-509.	5.0	3
93	Bioactive polymer coatings to improve bone repair. , 2009, , 309-323.		3
94	Inhibition of angiogenesis in vitro with soluble copolymers monitored with a quartz crystal resonator. Irbm, 2010, 31, 271-279.	5.6	3
95	Microstructure and biological evaluation of nanocrystalline diamond films deposited on titanium substrates using distributed antenna array microwave system. Diamond and Related Materials, 2020, 103, 107700.	3.9	3
96	Influence of spin finish on degradation, functionalization and long-term storage of polyethylene terephthalate fabrics dedicated to ligament prostheses. Scientific Reports, 2021, 11, 4258.	3.3	3
97	Competitive Adsorption of Albumin, Fibronectin and Collagen Type I on Different Biomaterial Surfaces: A QCM-D Study. IFMBE Proceedings, 2014, , 1597-1600.	0.3	3
98	Correlating degradation of functionalized polycaprolactone fibers and fibronectin adsorption using atomic force microscopy. Polymer Degradation and Stability, 2022, 195, 109788.	5.8	3
99	Double Functionalization for the Design of Innovative Craniofacial Prostheses. Jom, 0, , .	1.9	3
100	The effect of pNaSS grafting of knitted poly(Îμ-caprolactone) artificial ligaments on in vitro mineralization and in vivo osseointegration. Materialia, 2022, 21, 101331.	2.7	3
101	Trends in Metal-Based Composite Biomaterials for Hard Tissue Applications. Jom, 2022, 74, 102-125.	1.9	3
102	CopolymÃ"res solubles inhibiteurs de l'angiogenÃ"se in vitro. IRBM News, 2005, 26, 267-269.	0.1	2
103	Le greffage radicalaire de polymÃ"res bioactifs sur le titane pour prévenir l'infection sur prothÃ"se articulaire. Irbm, 2011, 32, 322-325.	5 . 6	2
104	Improved proliferation and osteogenic differentiation of human mesenchymal stem cells on a titanium biomaterial grafted with poly(sodium styrene sulphonate) and coated with a platelet-rich plasma proteins biofilm. Journal of Bioactive and Compatible Polymers, 2016, 31, 568-582.	2.1	2
105	Chondrogenic differentiation of human bone marrow aspirates enhanced by overexpression of RAAV-SOX9 and TGF-B upon vector delivery via pnass-grafted microstructured poly(E-caprolactone) scaffolds. Osteoarthritis and Cartilage, 2020, 28, S520-S521.	1.3	2
106	Surface modification of hydrogel intraocular lenses to prevent cell proliferation. Journal of Applied Biomaterials and Biomechanics, 2004, 2, 183-90.	0.4	2
107	Influence of poly(styrene sodium sulfonate) grafted silicone breast implant's surface on the biological response and its mechanical properties. Materials Today Communications, 2022, 31, 103318.	1.9	2
108	Functionalization of biomaterials for joint implant application. Bio-Medical Materials and Engineering, 2008, 18, 237-239.	0.6	1

#	Article	IF	CITATIONS
109	PolymÃ"res bactériostatiquesÂ: une nouvelle approche pour les ciments orthopédiques. Irbm, 2009, 30, 205-207.	5.6	1
110	Modélisation de l'effet de la rugosité sur l'adhésion d'ostéoblastes : application au titane. M Et Techniques, 2010, 98, 49-57.	aterjaux	1
111	Genetic modification of human bone marrow aspirates viaÂdelivery of rAAV vectors coated on pNaSS-grafted poly(ε-caprolactone) scaffolds. Osteoarthritis and Cartilage, 2018, 26, S134-S135.	1.3	1
112	Biomechanical evaluation of a bioactive artificial anterior cruciate ligament. Advances in Biomechanics and Applications, 2014, 1, 239-252.	0.2	1
113	Atomic force microscopy characterization of polyethylene terephthalate grafting with poly(styrene) Tj ETQq1 1 0.	784314 rg 2.6	gBT /Overlo
114	Use of a quartz crystal resonator to study the cell adhesion process. , 0 , , .		0
115	Titanium alloy surface coatings using poly(sodium styrene sulfonate) and poly(acrylic acid). Bio-Medical Materials and Engineering, 2017, 27, 657-668.	0.6	0
116	Overexpression of rAAV-SOX9 and TGF-B in human bone marrow aspirates upon vector delivery via pNaSS-coated poly(e-caprolactone) scaffolds. Osteoarthritis and Cartilage, 2019, 27, S149-S150.	1.3	0
117	Cover Image, Volume 138, Issue 17. Journal of Applied Polymer Science, 2021, 138, 50573.	2.6	0
118	Genetically modified human bone marrow aspirates by rAAV mediated overexpression of sox9 and TGF-beta viapnass-grafted poly(e-caprolactone) film-guided delivery activates the chondrogenic activity upon implantation in human osteochondral defects. Osteoarthritis and Cartilage, 2021, 29, S194-S195.	1.3	0
119	Development of Direct Grafting on Cyclic Olefin Copolymers to Improve Hydrophilicity by Using Bioactive Polymers. Irbm, 2021, , .	5.6	0
120	Functionalization of biomaterials for joint implant application. Bio-Medical Materials and Engineering, 2008, 18, 237-9.	0.6	0
121	ANTERIOR CRUCIATE LIGAMENT REPAIR VIA SCAFFOLD-GUIDED GENE THERAPY. Osteoarthritis and Cartilage, 2022, 30, S178.	1.3	0