
Alexandre Harari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2900339/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensitive identification of neoantigens and cognate TCRs in human solid tumors. Nature Biotechnology, 2022, 40, 656-660.	17.5	41
2	High levels of monocytic myeloid-derived suppressor cells are associated with favorable outcome in patients with pneumonia and sepsis with multi-organ failure. Intensive Care Medicine Experimental, 2022, 10, 5.	1.9	13
3	Immune pressure sculps tumor cells and trims high-quality mutations. Cancer Cell, 2022, 40, 717-719.	16.8	1
4	Prediction of neo-epitope immunogenicity reveals TCR recognition determinants and provides insight into immunoediting. Cell Reports Medicine, 2021, 2, 100194.	6.5	77
5	Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. Science Advances, 2021, 7,	10.3	157
6	Personalized cancer vaccine strategy elicits polyfunctional T cells and demonstrates clinical benefits in ovarian cancer. Npj Vaccines, 2021, 6, 36.	6.0	27
7	Unsupervised Analysis of Flow Cytometry Data in a Clinical Setting Captures Cell Diversity and Allows Population Discovery. Frontiers in Immunology, 2021, 12, 633910.	4.8	8
8	The Promise of Personalized TCR-Based Cellular Immunotherapy for Cancer Patients. Frontiers in Immunology, 2021, 12, 701636.	4.8	6
9	Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Reports, 2021, 36, 109412.	6.4	60
10	Microfluidic Device for Droplet Pairing by Combining Droplet Railing and Floating Trap Arrays. Micromachines, 2021, 12, 1076.	2.9	5
11	A Personalized Neoantigen Vaccine in Combination with Platinum-Based Chemotherapy Induces a T-Cell Response Coinciding with a Complete Response in Endometrial Carcinoma. Cancers, 2021, 13, 5801.	3.7	2
12	Vaccines as Priming Tools for T Cell Therapy for Epithelial Cancers. Cancers, 2021, 13, 5819.	3.7	4
13	A new workflow combining magnetic cell separation and impedance-based cell dispensing for gentle, simple and reliable cloning of specific CD8+ T cells. SLAS Technology, 2021, , .	1.9	1
14	High-throughput identification of human antigen-specific CD8+ and CD4+ T cells using soluble pMHC multimers. Methods in Enzymology, 2020, 631, 21-42.	1.0	3
15	Development of an optimized closed and semi-automatic protocol for Good Manufacturing Practice manufacturing of tumor-infiltrating lymphocytes in a hospital environment. Cytotherapy, 2020, 22, 780-791.	0.7	9
16	T-cell repertoire analysis and metrics of diversity and clonality. Current Opinion in Biotechnology, 2020, 65, 284-295.	6.6	79
17	Antitumour dendritic cell vaccination in a priming and boosting approach. Nature Reviews Drug Discovery, 2020, 19, 635-652.	46.4	148
18	Structural dissimilarity from self drives neoepitope escape from immune tolerance. Nature Chemical Biology, 2020, 16, 1269-1276.	8.0	53

ALEXANDRE HARARI

#	Article	IF	CITATIONS
19	Deciphering the Mechanisms of Improved Immunogenicity of Hypochlorous Acid-Treated Antigens in Anti-Cancer Dendritic Cell-Based Vaccines. Vaccines, 2020, 8, 271.	4.4	13
20	Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes. Nature Communications, 2020, 11, 1293.	12.8	196
21	Neoantigen-Specific Adoptive Cell Therapies for Cancer: Making T-Cell Products More Personal. Frontiers in Immunology, 2020, 11, 1215.	4.8	32
22	Cancer and HIV-1 Infection: Patterns of Chronic Antigen Exposure. Frontiers in Immunology, 2020, 11, 1350.	4.8	13
23	Quantitative and qualitative impairments in dendritic cell subsets of patients with ovarian or prostate cancer. European Journal of Cancer, 2020, 135, 173-182.	2.8	32
24	Biotechnologies to tackle the challenge of neoantigen identification. Current Opinion in Biotechnology, 2020, 65, 52-59.	6.6	25
25	Development and Optimization of a GMP-Compliant Manufacturing Process for a Personalized Tumor Lysate Dendritic Cell Vaccine. Vaccines, 2020, 8, 25.	4.4	13
26	Optimized combinatorial pMHC class II multimer labeling for precision immune monitoring of tumor-specific CD4 T cells in patients. , 2020, 8, e000435.		4
27	Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes. Nature Biotechnology, 2019, 37, 1283-1286.	17.5	208
28	Adenosine mediates functional and metabolic suppression of peripheral and tumor-infiltrating CD8+ T cells. , 2019, 7, 257.		120
29	A Phase Ib Study of the Combination of Personalized Autologous Dendritic Cell Vaccine, Aspirin, and Standard of Care Adjuvant Chemotherapy Followed by Nivolumab for Resected Pancreatic Adenocarcinoma—A Proof of Antigen Discovery Feasibility in Three Patients. Frontiers in Immunology, 2019, 10, 1832.	4.8	73
30	High-throughput Screening of Human Tumor Antigen–specific CD4 T Cells, Including Neoantigen-reactive T Cells. Clinical Cancer Research, 2019, 25, 4320-4331.	7.0	15
31	Tumor-associated factors are enriched in lymphatic exudate compared to plasma in metastatic melanoma patients. Journal of Experimental Medicine, 2019, 216, 1091-1107.	8.5	102
32	Microfluidic device performing on flow study of serial cell–cell interactions of two cell populations. RSC Advances, 2019, 9, 41066-41073.	3.6	6
33	A Phase I/II trial comparing autologous dendritic cell vaccine pulsed either with personalized peptides (PEP-DC) or with tumor lysate (OC-DC) in patients with advanced high-grade ovarian serous carcinoma. Journal of Translational Medicine, 2019, 17, 391.	4.4	42
34	Measurement of Mitochondrial Mass and Membrane Potential in Hematopoietic Stem Cells and T-cells by Flow Cytometry. Journal of Visualized Experiments, 2019, , .	0.3	4
35	50-Gy Stereotactic Body Radiation Therapy to the Dominant Intraprostatic Nodule: Results From a Phase 1a/b Trial. International Journal of Radiation Oncology Biology Physics, 2019, 103, 320-334.	0.8	28
36	Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Science Translational Medicine, 2018, 10, .	12.4	326

Alexandre Harari

#	Article	IF	CITATIONS
37	Sensitive and frequent identification of high avidity neo-epitopeÂspecific CD8 + T cells in immunotherapy-naive ovarian cancer. Nature Communications, 2018, 9, 1092.	12.8	122
38	Label-free identification of activated T lymphocytes through tridimensional microsensors on chip. Biosensors and Bioelectronics, 2017, 94, 193-199.	10.1	36
39	Neoantigen-based cancer immunotherapy. Annals of Translational Medicine, 2016, 4, 262-262.	1.7	63
40	Cancer Vaccines in Ovarian Cancer: How Can We Improve?. Biomedicines, 2016, 4, 10.	3.2	47
41	Novel technologies and emerging biomarkers for personalized cancer immunotherapy. , 2016, 4, 3.		183
42	Personalized approaches to active immunotherapy in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 72-82.	7.4	41
43	Immune monitoring technology primer: flow and mass cytometry. , 2015, 3, 44.		27
44	Interleukin-1- and Type I Interferon-Dependent Enhanced Immunogenicity of an NYVAC-HIV-1 Env-Gag-Pol-Nef Vaccine Vector with Dual Deletions of Type I and Type II Interferon-Binding Proteins. Journal of Virology, 2015, 89, 3819-3832.	3.4	10
45	Combined Use of Mycobacterium tuberculosis–Specific CD4 and CD8 T-Cell Responses Is a Powerful Diagnostic Tool of Active Tuberculosis. Clinical Infectious Diseases, 2015, 60, 432-437.	5.8	75
46	High-throughput monitoring of human tumor-specific T-cell responses with large peptide pools. Oncolmmunology, 2015, 4, e1029702.	4.6	17
47	CD160-Associated CD8 T-Cell Functional Impairment Is Independent of PD-1 Expression. PLoS Pathogens, 2014, 10, e1004380.	4.7	69
48	MART-1 peptide vaccination plus IMP321 (LAG-3Ig fusion protein) in patients receiving autologous PBMCs after lymphodepletion: results of a Phase I trial. Journal of Translational Medicine, 2014, 12, 97.	4.4	69
49	<i>Mycobacterium tuberculosis</i> â€specific CD8 ⁺ T cells are functionally and phenotypically different between latent infection and active disease. European Journal of Immunology, 2013, 43, 1568-1577.	2.9	172
50	Lack of <i>Mycobacterium tuberculosis</i> –specific interleukinâ€17A–producing CD4 ⁺ TÂcells in active disease. European Journal of Immunology, 2013, 43, 939-948.	2.9	60
51	Rapid Perturbation in Viremia Levels Drives Increases in Functional Avidity of HIV-specific CD8 T Cells. PLoS Pathogens, 2013, 9, e1003423.	4.7	25
52	NYVAC immunization induces polyfunctional HIVâ€specific Tâ€cell responses in chronicallyâ€infected, ARTâ€treated HIV patients. European Journal of Immunology, 2012, 42, 3038-3048.	2.9	30
53	Large TCR Diversity of Virus-Specific CD8 T Cells Provides the Mechanistic Basis for Massive TCR Renewal after Antigen Exposure. Journal of Immunology, 2011, 186, 7039-7049.	0.8	57
54	Dominant TNF-α+ Mycobacterium tuberculosis–specific CD4+ T cell responses discriminate between latent infection and active disease. Nature Medicine, 2011, 17, 372-376.	30.7	380

Alexandre Harari

#	Article	IF	CITATIONS
55	DNA/NYVAC Vaccine Regimen Induces HIV-Specific CD4 and CD8 T-Cell Responses in Intestinal Mucosa. Journal of Virology, 2011, 85, 9854-9862.	3.4	35
56	Early and Prolonged Antiretroviral Therapy Is Associated with an HIV-1-Specific T-Cell Profile Comparable to That of Long-Term Non-Progressors. PLoS ONE, 2011, 6, e18164.	2.5	46
57	Proliferation Capacity and Cytotoxic Activity Are Mediated by Functionally and Phenotypically Distinct Virus-Specific CD8 T Cells Defined by Interleukin-7RĨ± (CD127) and Perforin Expression. Journal of Virology, 2010, 84, 3868-3878.	3.4	46
58	Distinct Profiles of Cytotoxic Granules in Memory CD8 T Cells Correlate with Function, Differentiation Stage, and Antigen Exposure. Journal of Virology, 2009, 83, 2862-2871.	3.4	104
59	HIVâ€lâ€Specific Immune Response. Advances in Pharmacology, 2008, 56, 75-92.	2.0	10
60	An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses. Journal of Experimental Medicine, 2008, 205, 63-77.	8.5	273
61	Skewed association of polyfunctional antigen-specific CD8 T cell populations with HLA-B genotype. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16233-16238.	7.1	118
62	Role of HIV-1-specific CD4 T cells. Current Opinion in HIV and AIDS, 2006, 1, 22-27.	3.8	6
63	Functional signatures of protective antiviral Tâ€cell immunity in human virus infections. Immunological Reviews, 2006, 211, 236-254.	6.0	256
64	Understanding what makes a goodversus a bad vaccine. European Journal of Immunology, 2005, 35, 2528-2531.	2.9	2
65	HIV-1-specific IFN-γ/IL-2-secreting CD8 T cells support CD4-independent proliferation of HIV-1-specific CD8 T cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7239-7244.	7.1	277
66	Functional Heterogeneity of Memory CD4 T Cell Responses in Different Conditions of Antigen Exposure and Persistence. Journal of Immunology, 2005, 174, 1037-1045.	0.8	271
67	Phenotypic heterogeneity of antigen-specific CD4 T cells under different conditions of antigen persistence and antigen load. European Journal of Immunology, 2004, 34, 3525-3533.	2.9	169
68	Cytomegalovirus (CMV)-Specific cellular immune responses. Human Immunology, 2004, 65, 500-506.	2.4	86
69	Skewed representation of functionally distinct populations of virus-specific CD4 T cells in HIV-1–infected subjects with progressive disease: changes after antiretroviral therapy. Blood, 2004, 103, 966-972.	1.4	345
70	Feasibility of a Stem Cell Gene Therapy Approach with Nonmyeloablative Conditioning in Patients with HIV-1 Infection Blood, 2004, 104, 412-412.	1.4	1
71	Analysis of HIV-1–  and CMV-specific memory CD4 T-cell responses during primary and chronic infection. Blood, 2002, 100, 1381-1387.	1.4	97
72	Distribution and functional analysis of memory antiviral CD8 T cell responses in HIV-1 and cytomegalovirus infections. European Journal of Immunology, 2002, 32, 3756-3764.	2.9	79

#	Article	IF	CITATIONS
73	Treatment of primary HIV-1 infection with cyclosporin A coupled with highly active antiretroviral therapy. Journal of Clinical Investigation, 2002, 109, 681-688.	8.2	109
74	Treatment of primary HIV-1 infection with cyclosporin A coupled with highly active antiretroviral therapy. Journal of Clinical Investigation, 2002, 109, 681-688.	8.2	65
75	Antiviral memory T cell responses: correlation with protective immunity and implication for vaccine development. Advances in Experimental Medicine and Biology, 2002, 512, 155-64.	1.6	ο