Stéphane Coen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/289644/publications.pdf

Version: 2024-02-01

47006 27406 13,031 193 47 106 citations h-index g-index papers 196 196 196 4829 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Phase and intensity control of dissipative Kerr cavity solitons. Journal of the Royal Society of New Zealand, 2022, 52, 149-167.	1.9	17
2	Breathing dynamics of symmetry-broken temporal cavity solitons in Kerr ring resonators. Optics Letters, 2022, 47, 1486.	3.3	15
3	Soliton linear-wave scattering in a Kerr microresonator. Communications Physics, 2022, 5, .	5.3	13
4	Frequency comb generation in a pulse-pumped normal dispersion Kerr mini-resonator. Optics Letters, 2021, 46, 512.	3.3	29
5	Dissipative Polarization Domain Walls in a Passive Coherently Driven Kerr Resonator. Physical Review Letters, 2021, 126, 023904.	7.8	19
6	Spontaneous symmetry breaking of dissipative optical solitons in a two-component Kerr resonator. Nature Communications, 2021, 12, 4023.	12.8	48
7	Breathing Cavity Solitons and Polychromatic Dispersive Radiation in a Near-Zero Dispersion Kerr Resonator., 2021,,.		O
8	Features of spontaneous symmetry breaking of dissipative cavity solitons in passive Kerr resonators. , 2021, , .		0
9	Nonlinear Localization of Dissipative Modulation Instability. Physical Review Letters, 2021, 127, 123901.	7.8	12
10	Towards real time assessment of intramuscular fat content in meat using optical fiber-based optical coherence tomography. Meat Science, 2021, 181, 108411.	5 . 5	5
11	Universal flip-flopping and self-symmetrization of symmetry-breaking dynamics in passive Kerr resonators., 2021,,.		O
12	Tunable Kerr combs in a normal dispersion pulse-driven mini-resonator., 2021,,.		0
13	Dual-microcomb generation in a synchronously driven waveguide ring resonator. Optics Letters, 2021, 46, 6002.	3.3	5
14	Observations of existence and instability dynamics of near-zero-dispersion temporal Kerr cavity solitons. Physical Review Research, 2021, 3, .	3.6	6
15	Asymmetric balance in symmetry breaking. Physical Review Research, 2020, 2, .	3.6	38
16	Spontaneous symmetry breaking of Kerr cavity solitons. , 2020, , .		1
17	Experimental observation of internally pumped parametric oscillation and quadratic comb generation in a χ ⁽²⁾ whispering-gallery-mode microresonator. Optics Letters, 2020, 45, 1204.	3.3	31
18	Polarization modulation instability in a nonlinear fiber Kerr resonator. Optics Letters, 2020, 45, 5069.	3.3	12

#	Article	IF	Citations
19	Harmonic and rational harmonic driving of microresonator soliton frequency combs. Optica, 2020, 7, 940.	9.3	21
20	Experimental observations of bright dissipative cavity solitons and their collapsed snaking in a Kerr resonator with normal dispersion driving. Optica, 2020, 7, 1195.	9.3	44
21	Large-frequency-shift tunable parametric oscillation in a Kerr microresonator. , 2020, , .		0
22	Manipulating dispersive waves in a normal dispersion fiber ring resonator driven by optical pulses. , 2020, , .		0
23	Experimental observation of bright temporal cavity solitons enabled by third-order dispersion. , 2020, , .		0
24	Breathing dynamics of symmetry-broken polarized temporal cavity solitons in Kerr ring resonators. , 2020, , .		1
25	Spontaneous polarization symmetry breaking of temporal cavity solitons in optical Kerr resonators. , 2020, , .		0
26	Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators. Nature Photonics, 2019, 13, 701-706.	31.4	80
27	Coexistence and Interactions between Nonlinear States with Different Polarizations in a Monochromatically Driven Passive Kerr Resonator. Physical Review Letters, 2019, 123, 013902.	7.8	48
28	Wideband Tunability of Kerr Parametric Oscillation in an MgF2 Microresonator., 2019,,.		0
29	Symmetry Breaking: Balancing Asymmetries. , 2019, , .		0
30	Experimental Observation of Chimera-Like States in a Passive Kerr Resonator., 2019,,.		0
31	Experimental Observation of Coexisting Differently Polarized Cavity Solitons in a Monochromatically Driven Passive Kerr Resonator. , 2019, , .		0
32	Impact of desynchronization and drift on soliton-based Kerr frequency combs in the presence of pulsed driving fields. Physical Review A, 2019, 100, .	2.5	27
33	Desynchronization of Pulsed Driving in the Formation of Soliton Kerr Frequency Combs. , 2019, , .		0
34	Continuous tunability of a microresonator parametric oscillator., 2019,,.		0
35	Octave-spanning Tunable Parametric Oscillation in Crystalline Kerr Microresonators. , 2019, , .		0
36	Stimulated Raman Scattering Imposes Fundamental Limits to the Duration and Bandwidth of Temporal Cavity Solitons. Physical Review Letters, 2018, 120, 053902.	7.8	46

#	Article	IF	Citations
37	Micro-combs: A novel generation of optical sources. Physics Reports, 2018, 729, 1-81.	25.6	448
38	Invited Article: Emission of intense resonant radiation by dispersion-managed Kerr cavity solitons. APL Photonics, 2018, 3, 120804.	5.7	29
39	Origins of clustered frequency combs in Kerr microresonators. Optics Letters, 2018, 43, 4180.	3.3	12
40	Experimental observations of breathing Kerr temporal cavity solitons at large detunings. Optics Letters, 2018, 43, 3674.	3.3	9
41	Spontaneous symmetry breaking and trapping of temporal Kerr cavity solitons by pulsed or amplitude-modulated driving fields. Physical Review A, 2018, 97, .	2.5	44
42	Flip-Flop Polarization Domain Walls in a Kerr Resonator. , 2018, , .		1
43	Addressing temporal Kerr cavity solitons with a single pulse of intensity modulation. Optics Letters, 2018, 43, 3192.	3.3	23
44	Observation of super cavity solitons. , 2018, , .		0
45	Programmable Repetition Rate Optical Source Based on Fiber Cavity Solitons. , 2018, , .		0
46	Atypical Trapping of Cavity Solitons in Kerr Resonators Driven with Optical Pulses., 2018,,.		0
47	Strong resonant radiation limits Kerr cavity soliton existence in longitudinally modulated resonators. , 2018, , .		0
48	Nonlinear dynamics of optical frequency combs., 2017,,.		0
49	Experimental and numerical investigations of switching wave dynamics in a normally dispersive fibre ring resonator. European Physical Journal D, 2017, 71, 1.	1.3	33
50	Coexistence of Multiple Nonlinear States in a Tristable Passive Kerr Resonator. Physical Review X, 2017, 7, .	8.9	36
51	Universal mechanism for the binding of temporal cavity solitons. Optica, 2017, 4, 855.	9.3	104
52	Widely tunable optical parametric oscillation in a Kerr microresonator. Optics Letters, 2017, 42, 5190.	3.3	31
53	Observations of spatiotemporal instabilities of temporal cavity solitons. Optica, 2016, 3, 1071.	9.3	67
54	All-optical buffer based on temporal cavity solitons operating at 10  Gb/s. Optics Letters, 2016, 41, 4520	6. 3.3	36

#	Article	IF	Citations
55	Single envelope equation modeling of multi-octave comb arrays in microresonators with quadratic and cubic nonlinearities. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 1207.	2.1	33
56	Origin and stability of dark pulse Kerr combs in normal dispersion resonators. Optics Letters, 2016, 41, 2402.	3.3	89
57	Theory of quadratic optical frequency combs. , 2016, , .		O
58	Frequency-comb formation in doubly resonant second-harmonic generation. Physical Review A, 2016, 93, .	2.5	67
59	Walk-Off-Induced Modulation Instability, Temporal Pattern Formation, and Frequency Comb Generation in Cavity-Enhanced Second-Harmonic Generation. Physical Review Letters, 2016, 116, 033901.	7.8	100
60	Controlled merging and annihilation of localised dissipative structures in an AC-driven damped nonlinear SchrĶdinger system. New Journal of Physics, 2016, 18, 033034.	2.9	27
61	Measurement of microresonator frequency comb coherence by spectral interferometry. Optics Letters, 2016, 41, 277.	3.3	16
62	Real Time Observations of Soliton Bound States, with Multiple Binding Mechanisms, in Passive Nonlinear Cavities. , 2016 , , .		2
63	Theory of Frequency Comb Generation in Cavity Enhanced Second Harmonic Generation., 2016,,.		1
64	Writing and Erasure of Temporal Cavity Solitons via Intensity Modulation of the Cavity Driving Field. , 2016, , .		1
65	Experimental observation of coherent cavity soliton frequency combs in silica microspheres. Optics Letters, 2016, 41, 4613.	3.3	66
66	Coexistence of Temporal Cavity Solitons and Modulation Instability in a Passive Kerr Cavity., 2016,,.		0
67	Cavity soliton frequency comb generation in silica microspheres. , 2016, , .		O
68	Stability Analysis of Dark Pulse Kerr Frequency Combs in Normal Dispersion Optical Microresonators. , 2016, , .		0
69	Controlled Collisions of Dissipative Solitons. , 2016, , .		O
70	Observation of Spatiotemporal Chaos Induced by a Cavity Soliton in a Fiber Ring Resonator., 2016,,.		0
71	Origin and stability of dark pulse Kerr frequency combs in normal dispersion microresonators. , 2016,		0
72	Frequency combs in quadratically nonlinear resonators. , 2016, , .		0

#	Article	IF	Citations
73	Measurement of the Raman Self-Frequency Shift of a Temporal Cavity Soliton., 2016,,.		3
74	Coexistence of Distinct Cavity Solitons States in a Tri-stable Passive Kerr Resonator., 2016,,.		0
75	Observations of Complex Spatiotemporal Instabilities in a Fiber Ring Resonator. , 2016, , .		0
76	Cherenkov-radiation-induced binding of temporal cavity solitons observed in a passive fiber ring resonator. , $2016, , .$		0
77	Measuring the Degree of Coherence of Microresonator Frequency Combs. , 2016, , .		0
78	Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field. Optics Letters, 2015, 40, 4755.	3.3	49
79	Bunching of temporal cavity solitons via forward Brillouin scattering. New Journal of Physics, 2015, 17, 115009.	2.9	17
80	Temporal Cavity Solitons: From Fiber Resonators to Microresonators. , 2015, , .		0
81	Existence and dynamics of pairs of temporal cavity solitons weakly-bound through kelly sidebands in a passive optical fiber resonator. , 2015, , .		0
82	Coherent supercontinuum generation in a silicon photonic wire in the telecommunication wavelength range. Optics Letters, 2015, 40, 123.	3.3	52
83	An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nature Communications, 2015, 6, 6310.	12.8	191
84	Impact of third-order dispersion on nonlinear bifurcations in optical resonators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1934-1937.	2.1	5
85	Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. Nature Communications, 2015, 6, 7370.	12.8	141
86	Spontaneous creation and annihilation of temporal cavity solitons in a coherently driven passive fiber resonator. Optics Letters, 2015, 40, 3735.	3.3	44
87	Creation and Annihilation Dynamics of Temporal Cavity Solitons. , 2015, , .		0
88	Temporal cavity solitons: from all-optical memories to microresonator frequency combs., 2015,,.		0
89	Spatio-temporal stability of 1D Kerr cavity solitons. , 2014, , .		0
90	Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550  nm telecommunication wavelength. Optics Letters, 2014, 39, 3623.	3.3	60

#	Article	IF	CITATIONS
91	Transient Dynamics of Cavity Soliton Merging. , 2014, , .		1
92	Experimental demonstration of coherent supercontinuum generation in a silicon wire pumped at telecommunication wavelengths. , 2014, , .		0
93	Femtosecond Supercontinuum Generation in a Silicon Wire Waveguide at Telecom Wavelengths. , 2014, , .		0
94	Experimental observation of the spontaneous breaking of the time-reversal symmetry in a synchronously pumped passive Kerr resonator. Optics Letters, 2014, 39, 3492.	3.3	22
95	Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs. Physical Review A, 2014, 89, .	2.5	103
96	Third-order chromatic dispersion stabilizes Kerr frequency combs. Optics Letters, 2014, 39, 2971.	3.3	78
97	Complete control of temporal cavity solitons. , 2014, , .		1
98	Mean-field Numerical Modelling of Microresonator Frequency Combs. , 2014, , .		0
99	Bound states of temporal cavity solitons. , 2014, , .		0
100	Observation of dispersive wave emission by temporal cavity solitons. Optics Letters, 2014, 39, 5503.	3.3	81
101	Modeling Kerr frequency combs using the Lugiato-Lefever equation: a characterization of the multistable landscape. , 2014, , .		1
102	Coherence properties of Kerr frequency combs. Optics Letters, 2014, 39, 283.	3.3	79
103	Coherence properties of optical frequency combs generated in Kerr microresonators. , 2014, , .		0
104	Temporal tweezing of light. , 2014, , .		0
105	Observation of dispersive wave emission by temporal cavity solitons. , 2014, , .		1
106	Stabilization of frequency combs using third order dispersion. , 2014, , .		0
107	High-fidelity optical buffer based on temporal cavity solitons. , 2014, , .		0
108	Unexpected weak interaction. Nature Photonics, 2013, 7, 664-664.	31.4	0

#	Article	IF	Citations
109	Ultraweak long-range interactions of solitons observed over astronomical distances. Nature Photonics, 2013, 7, 657-663.	31.4	183
110	Suppression of temporal cavity soliton interactions by phase modulation of the driving beam., 2013,,.		0
111	Universal scaling laws of Kerr frequency combs. Optics Letters, 2013, 38, 1790.	3.3	250
112	Dynamics of one-dimensional Kerr cavity solitons. Optics Express, 2013, 21, 9180.	3.4	189
113	Ultraweak Soliton Interactions. Optics and Photonics News, 2013, 24, 49.	0.5	0
114	Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Optics Letters, 2013, 38, 37.	3.3	505
115	Ultra-weak acoustic interactions of temporal cavity solitons. , 2013, , .		0
116	Observation of dispersive-wave emission by temporal cavity solitons., 2013,,.		0
117	Steady-state and instabilities of octave-spanning Kerr frequency combs modeled using a generalized Lugiato-Lefever equation. , 2013, , .		0
118	Dispersion compensation in Fourier domain optical coherence tomography using the fractional Fourier transform. Optics Express, 2012, 20, 23398.	3.4	58
119	Instantaneous quadrature components or Jones vector retrieval using the Pancharatnam–Berry phase in frequency domain low-coherence interferometry. Optics Letters, 2012, 37, 3102.	3.3	10
120	Cavity soliton oscillations in a one-dimensional fiber resonator. , 2012, , .		1
121	Complex conjugate term manipulation in optical frequency-domain imaging using the time-frequency distribution. Proceedings of SPIE, 2012, , .	0.8	0
122	Depth-ambiguity free or polarization sensitive optical frequency domain imaging using the Pancharatnam-Berry phase. , 2012, , .		0
123	Characterization of Temporal Cavity Solitons by Frequency Resolved Optical Gating (FROG)., 2012,,.		0
124	Chromatic dispersion compensation of an OCT system with a programmable spectral filter., 2011,,.		1
125	Phase and amplitude optimization in an optical coherence tomography system using a programmable spectral filter., 2011,,.		0
126	Observation of a temporal symmetry breaking instability in a synchronously-pumped passive fibre ring cavity. , $2011, \dots$		0

#	Article	lF	Citations
127	Comment on "Dark pulse emission of a fiber laser― Physical Review A, 2010, 82, .	2.5	13
128	Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nature Photonics, 2010, 4, 471-476.	31.4	609
129	Pulse-shape selection of an ultra-high repetition rate wavelength and repetition rate tunable mode-locked laser: From bright to dark pulses. , 2010, , .		0
130	Dark and bright pulse passive mode-locked laser with in-cavity pulse-shaper. Optics Express, 2010, 18, 22715.	3.4	38
131	Solid-core fiber with ultra-wide bandwidth transmission window due to inhibited coupling. Optics Express, 2010, 18, 25556.	3.4	20
132	Interplay of four-wave mixing processes with a mixed coherent-incoherent pump. Optics Express, 2010, 18, 25833.	3.4	5
133	Dual-fiber stretcher as a tunable dispersion compensator for an all-fiber optical coherence tomography system. Optics Letters, 2009, 34, 2903.	3.3	27
134	Coated photonic bandgap fibres for low-index sensing applications: cutoff analysis. Optics Express, 2009, 17, 16306.	3.4	20
135	Observation of high-contrast, fast intensity noise of a continuous wave Raman fiber laser. Optics Express, 2009, 17, 16444.	3.4	15
136	Towards a thermodynamic description of supercontinuum generation. , 2009, , .		1
137	Thermodynamic Approach of Supercontinuum Generation in Photonic Crystal Fiber., 2009,,.		0
138	Toward a thermodynamic description of supercontinuum generation. Optics Letters, 2008, 33, 2833.	3.3	39
139	Dynamics of an ultrahigh-repetition-rate passively mode-locked Raman fiber laser. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 1178.	2.1	55
140	Applications of Long Period Gratings in Solid Core Photonic Bandgap Fibers. AIP Conference Proceedings, 2008, , .	0.4	1
141	Noise-characterization of an ultra-fast Raman fiber laser. , 2008, , .		0
142	Characterization of a passively mode-locked Raman fiber laser. , 2008, , .		0
143	All-fiber optical coherence tomography system incorporating a dual fiber stretcher dispersion compensator., 2008,,.		3
144	Simultaneous observation of multiple four-wave mixing processes in the phase-matched and non-phase-matched regimes. , 2007, , .		0

#	Article	IF	CITATIONS
145	Influence of Raman susceptibility on optical parametric amplification in optical fibers. Optics Letters, 2007, 32, 521.	3.3	15
146	Fiber supercontinuum sources (Invited). Journal of the Optical Society of America B: Optical Physics, 2007, 24, 1771.	2.1	265
147	Combined effect of Raman and parametric gain on single-pump parametric amplifiers. Optics Express, 2007, 15, 8104.	3.4	73
148	Parametric processes in microstructured and highly nonlinear optical fibres. Optical and Quantum Electronics, 2007, 39, 1103-1114.	3.3	5
149	Supercontinuum generation using continuous-wave multiwavelength pumping and dispersion management. Optics Letters, 2006, 31, 2036.	3.3	35
150	Passively mode-locked Raman fiber laser with 100 GHz repetition rate. Optics Letters, 2006, 31, 3489.	3.3	71
151	Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 2006, 78, 1135-1184.	45.6	3,739
152	Broadband spectrally flat and high power density light source for fibre sensing purposes. Measurement Science and Technology, 2006, 17, 1014-1019.	2.6	32
153	Ultra-high repetition-rate passively mode-locked Raman fiber laser. , 2006, , .		0
154	Fiber Based Supercontinuum Sources for Optical Fibre Sensors. , 2006, , .		0
154	Fiber Based Supercontinuum Sources for Optical Fibre Sensors. , 2006, , . Supercontinuum sources. , 2005, 5825, 214.		0
		2.1	
155	Supercontinuum sources., 2005, 5825, 214. Coupled-mode analysis of stimulated Raman scattering and four-wave mixing in wavelength-division	2.1	1
155 156	Supercontinuum sources., 2005, 5825, 214. Coupled-mode analysis of stimulated Raman scattering and four-wave mixing in wavelength-division multiplexed systems. Optics Communications, 2005, 250, 191-201. Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of		1 11
155 156 157	Supercontinuum sources., 2005, 5825, 214. Coupled-mode analysis of stimulated Raman scattering and four-wave mixing in wavelength-division multiplexed systems. Optics Communications, 2005, 250, 191-201. Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area. Applied Physics B: Lasers and Optics, 2005, 81, 337-342. The role of pump incoherence in continuous-wave supercontinuum generation. Optics Express, 2005,	2.2	1 11 170
155 156 157	Supercontinuum sources., 2005, 5825, 214. Coupled-mode analysis of stimulated Raman scattering and four-wave mixing in wavelength-division multiplexed systems. Optics Communications, 2005, 250, 191-201. Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area. Applied Physics B: Lasers and Optics, 2005, 81, 337-342. The role of pump incoherence in continuous-wave supercontinuum generation. Optics Express, 2005, 13, 6615. Observation of Resonance Soliton Trapping due to a Photoinduced Gap in Wave Number. Physical	3.4	1 11 170 114
155 156 157 158	Supercontinuum sources., 2005, 5825, 214. Coupled-mode analysis of stimulated Raman scattering and four-wave mixing in wavelength-division multiplexed systems. Optics Communications, 2005, 250, 191-201. Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area. Applied Physics B: Lasers and Optics, 2005, 81, 337-342. The role of pump incoherence in continuous-wave supercontinuum generation. Optics Express, 2005, 13, 6615. Observation of Resonance Soliton Trapping due to a Photoinduced Gap in Wave Number. Physical Review Letters, 2004, 92, 223902.	2.2 3.4 7.8	1 11 170 114 21

#	Article	IF	Citations
163	Cascaded Raman generation in optical fibers : Influence of chromatic dispersion and Rayleigh backscattering. , 2004, , .		0
164	Numerical modeling of four-wave mixing-assisted Raman fiber laser. , 2004, , .		0
165	Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber. Applied Physics B: Lasers and Optics, 2003, 77, 269-277.	2.2	95
166	Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber. Physical Review Letters, 2003, 90, 113904.	7.8	329
167	Complete experimental characterization of the influence of parametric four-wave mixing on stimulated Raman gain. Optics Letters, 2003, 28, 1960.	3.3	57
168	Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber. Optics Letters, 2003, 28, 2225.	3.3	292
169	Experimental studies of the coherence of microstructure-fiber supercontinuum. Optics Express, 2003, 11, 2697.	3.4	136
170	Numerical and experimental study of the influence of chromatic dispersion on cascaded Raman generation in optical fibers. , 2003 , , .		1
171	Raman gain enhancement through four-wave mixing in a microstructured photonic crystal fiber. , 2003, , .		0
172	Observation of Non-Phase-Matched Parametric Amplification in Resonant Nonlinear Optics. Physical Review Letters, 2002, 89, 273901.	7.8	36
173	Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation. Optics Letters, 2002, 27, 482.	3.3	128
174	Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. Optics Letters, 2002, 27, 1180.	3.3	469
175	Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 753.	2.1	421
176	Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 765.	2.1	362
177	Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments. Optics Express, 2002, 10, 1215.	3.4	200
178	Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8, 651-659.	2.9	134
179	Cross correlation frequency-resolved optical gating characterization of supercontinuum generation in microstructure fiber: simulation and experiment. , 2002, , .		0
180	Spectral phase fluctuations and coherence degradation in supercontinuum generation in photonic crystal fibers. , 2002, , .		0

#	Article	IF	CITATIONS
181	What is the role of modulational instability in ultra-high repetition rate pulse generators based on passive and active fiber cavities ?. , 2002, , .		О
182	Domain Wall Solitons in Binary Mixtures of Bose-Einstein Condensates. Physical Review Letters, 2001, 87, 140401.	7.8	89
183	Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity. Optics Letters, 2001, 26, 39.	3.3	110
184	White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber. Optics Letters, 2001, 26, 1356.	3.3	283
185	Tunable near-infrared femtosecond soliton generation in photonic crystal fibres. Electronics Letters, 2001, 37, 1510.	1.0	71
186	Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser. Electronics Letters, 2001, 37, 881.	1.0	18
187	Simple amplitude and phase measuring technique for ultrahigh-repetition-rate lasers. IEEE Photonics Technology Letters, 2000, 12, 187-189.	2.5	24
188	Bistable switching induced by modulational instability in a normally dispersive all-fibre ring cavity. Journal of Optics B: Quantum and Semiclassical Optics, 1999, 1, 36-42.	1.4	22
189	Convection versus Dispersion in Optical Bistability. Physical Review Letters, 1999, 83, 2328-2331.	7.8	93
190	Competition between modulational instability and switching in optical bistability. Optics Letters, 1999, 24, 80.	3.3	36
191	Impedance-matched modulational instability laser for background-free pulse train generation in the THz range. Optics Communications, 1998, 146, 339-346.	2.1	17
192	Modulational Instability Induced by Cavity Boundary Conditions in a Normally Dispersive Optical Fiber. Physical Review Letters, 1997, 79, 4139-4142.	7.8	168
193	Interaction of four-wave mixing and stimulated Raman scattering in optical fibers. , 0, , 199-225.		o