Ahmad El-Hellani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2896396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electronic cigarettes: what are they and what do they do?. Annals of the New York Academy of Sciences, 2017, 1394, 5-30.	3.8	248
2	Nicotine and Carbonyl Emissions From Popular Electronic Cigarette Products: Correlation to Liquid Composition and Design Characteristics. Nicotine and Tobacco Research, 2018, 20, ntw280.	2.6	138
3	Characteristics and toxicant emissions of JUUL electronic cigarettes. Tobacco Control, 2019, 28, 678-680.	3.2	134
4	Free-Base and Protonated Nicotine in Electronic Cigarette Liquids and Aerosols. Chemical Research in Toxicology, 2015, 28, 1532-1537.	3.3	91
5	Transport phenomena governing nicotine emissions from electronic cigarettes: Model formulation and experimental investigation. Aerosol Science and Technology, 2017, 51, 1-11.	3.1	79
6	"Juice Monsters― Sub-Ohm Vaping and Toxic Volatile Aldehyde Emissions. Chemical Research in Toxicology, 2017, 30, 1791-1793.	3.3	65
7	Free-Base and Total Nicotine, Reactive Oxygen Species, and Carbonyl Emissions From IQOS, a Heated Tobacco Product. Nicotine and Tobacco Research, 2019, 21, 1285-1288.	2.6	56
8	Anionic and zwitterionic carboranyl N-heterocyclic carbene Au(<scp>i</scp>) complexes. Dalton Transactions, 2016, 45, 9762-9765.	3.3	49
9	Detection of 5-hydroxymethylfurfural and furfural in the aerosol of electronic cigarettes. Tobacco Control, 2016, 25, ii88-ii93.	3.2	46
10	Reactive Oxygen Species Emissions from Supra- and Sub-Ohm Electronic Cigarettes. Journal of Analytical Toxicology, 2019, 43, 45-50.	2.8	41
11	A comparison of the electrical characteristics, liquid composition, and toxicant emissions of JUUL USA and JUUL UK e-cigarettes. Scientific Reports, 2020, 10, 7322.	3.3	40
12	Electrical features, liquid composition and toxicant emissions from â€~pod-mod'-like disposable electronic cigarettes. Tobacco Control, 2022, 31, 667-670.	3.2	36
13	Carbon Monoxide and Small Hydrocarbon Emissions from Sub-ohm Electronic Cigarettes. Chemical Research in Toxicology, 2019, 32, 312-317.	3.3	35
14	Effect of free-base and protonated nicotine on nicotine yield from electronic cigarettes with varying power and liquid vehicle. Scientific Reports, 2020, 10, 16263.	3.3	26
15	Hot Wires and Film Boiling: Another Look at Carbonyl Formation in Electronic Cigarettes. Chemical Research in Toxicology, 2020, 33, 2172-2180.	3.3	16
16	Might limiting liquid nicotine concentration result in more toxic electronic cigarette aerosols?. Tobacco Control, 2021, 30, 348-350.	3.2	15
17	Flavor-Toxicant Correlation in E-cigarettes: A Meta-Analysis. Chemical Research in Toxicology, 2020, 33, 2932-2938.	3.3	14
18	Vaped Humectants in E-Cigarettes Are a Source of Phenols. Chemical Research in Toxicology, 2020, 33, 2374-2380.	3.3	14

AHMAD EL-HELLANI

#	Article	IF	CITATIONS
19	Toxic emissions resulting from sucralose added to electronic cigarette liquids. Aerosol Science and Technology, 2019, 53, 1197-1203.	3.1	13
20	JUUL â€~new technology' pods exhibit greater electrical power and nicotine output than previous devices. Tobacco Control, 2022, 31, 630-634.	3.2	10
21	Carboxylate Counteranions in Electronic Cigarette Liquids: Influence on Nicotine Emissions. Chemical Research in Toxicology, 2017, 30, 1577-1581.	3.3	8
22	Analysis of mainstream emissions, secondhand emissions and the environmental impact of IQOS waste: a systematic review on IQOS that accounts for data source. Tobacco Control, 2024, 33, 93-102.	3.2	6
23	Fate of pyrazines in the flavored liquids of e-cigarettes. Aerosol Science and Technology, 2018, 52, 377-384.	3.1	5
24	Electronic Cigarettes Are Chemical Reactors: Implication to Toxicity. Chemical Research in Toxicology, 2020, 33, 2489-2490.	3.3	5
25	Emerging ENDS products and challenges in tobacco control toxicity research. Tobacco Control, 2024, 33, 110-115.	3.2	2