Timothy C Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2895547/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Right Ventricular Shape Feature Quantification for Evaluation of Pulmonary Hypertension: Feasibility and Preliminary Associations With Clinical Outcome. Journal of Biomechanical Engineering, 2022, 144,	1.3	3
2	A clinically applicable strategy to estimate the in vivo distribution of mechanical material properties of the right ventricular wall. International Journal for Numerical Methods in Biomedical Engineering, 2022, 38, e3548.	2.1	1
3	Automated Inâ€Line Artificial Intelligence Measured Global Longitudinal Shortening and Mitral Annular Plane Systolic Excursion: Reproducibility and Prognostic Significance. Journal of the American Heart Association, 2022, 11, e023849.	3.7	11
4	Genetic resiliency associated with dominant lethal TPM1 mutation causing atrial septal defect with high heritability. Cell Reports Medicine, 2022, 3, 100501.	6.5	0
5	Ablation of Atrial Fibrillation in Hypertrophic Cardiomyopathy: Semper Discere (Always Learning). Journal of the American Heart Association, 2021, 10, e019876.	3.7	2
6	Maximal Wall Thickness Measurement in Hypertrophic Cardiomyopathy. JACC: Cardiovascular Imaging, 2021, 14, 2123-2134.	5.3	18
7	Many Facets of Left Ventricular Dyssynchrony. Circulation: Cardiovascular Imaging, 2021, 14, e013060.	2.6	1
8	Extracellular Volume Associates WithÂOutcomes More Strongly Than Native or Post-Contrast Myocardial T1. JACC: Cardiovascular Imaging, 2020, 13, 44-54.	5.3	68
9	The electrical determinants of increased wall thickness and mass in left ventricular hypertrophy. Journal of Electrocardiology, 2020, 58, 80-86.	0.9	12
10	Society for Cardiovascular Magnetic Resonance (SCMR) recommended CMR protocols for scanning patients with active or convalescent phase COVID-19 infection. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 61.	3.3	63
11	Society for Cardiovascular Magnetic Resonance (SCMR) guidance for re-activation of cardiovascular magnetic resonance practice after peak phase of the COVID-19 pandemic. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 58.	3.3	13
12	Extracellular Volume and Global Longitudinal Strain Both Associate WithÂOutcomes But Correlate Minimally. JACC: Cardiovascular Imaging, 2020, 13, 2343-2354.	5.3	42
13	Firstâ€Degree Atrioventricular Block and Hypertrophic Cardiomyopathy: "l Have a Bad Feeling About This― Journal of the American Heart Association, 2020, 9, e015911.	3.7	1
14	Cardiac Magnetic Resonance Parametric Mapping Following Heart Transplantation. JACC: Cardiovascular Imaging, 2020, 13, 1531-1533.	5.3	0
15	Efficient 1-Hour Technetium-99 m Pyrophosphate Imaging Protocol for the Diagnosis of Transthyretin Cardiac Amyloidosis. Circulation: Cardiovascular Imaging, 2020, 13, e010249.	2.6	55
16	Evaluation of Mavacamten in Symptomatic Patients With Nonobstructive Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 2020, 75, 2649-2660.	2.8	176
17	Novel Pharmacotherapy for Hypertrophic Cardiomyopathy. Cardiology Clinics, 2019, 37, 113-117.	2.2	0
18	Imaging-Based Surveillance for Graft Rejection Following HeartÂTransplantation. JACC: Cardiovascular Imaging, 2019, 12, 1615-1617.	5.3	1

TIMOTHY C WONG

#	Article	IF	CITATIONS
19	Temporal Relation Between Myocardial Fibrosis and Heart Failure With Preserved Ejection Fraction. JAMA Cardiology, 2017, 2, 995.	6.1	164
20	Diffuse Myocardial Fibrosis Reduces Electrocardiographic Voltage Measures of Left Ventricular Hypertrophy Independent of Left Ventricular Mass. Journal of the American Heart Association, 2017, 6, .	3.7	39
21	Diffuse myocardial fibrosis among healthy pediatric heart transplant recipients: Correlation of histology, cardiovascular magnetic resonance, and clinical phenotype. Pediatric Transplantation, 2017, 21, e12986.	1.0	14
22	Diagnostic Performance of Treadmill Exercise Cardiac Magnetic Resonance: The Prospective, Multicenter Exercise CMR's Accuracy for Cardiovascular Stress Testing (EXACT) Trial. Journal of the American Heart Association, 2016, 5, .	3.7	42
23	Automatic Measurement of the MyocardialÂInterstitium. JACC: Cardiovascular Imaging, 2016, 9, 54-63.	5.3	127
24	Many Paths Lead to CV Outcomes. JACC: Cardiovascular Imaging, 2016, 9, 24-26.	5.3	5
25	The Implications and Assessment of Myocardial Fibrosis in Older Cardiovascular Patients. Current Geriatrics Reports, 2015, 4, 362-367.	1.1	0
26	Think Small and Examine the Constituents of Left Ventricular Hypertrophy and Heart Failure: Cardiomyocytes Versus Fibroblasts, Collagen, and Capillaries in the Interstitium. Journal of the American Heart Association, 2015, 4, e002491.	3.7	11
27	Myocardial Fibrosis Quantified by Extracellular Volume Is Associated With Subsequent Hospitalization for Heart Failure, Death, or Both Across the Spectrum of Ejection Fraction and Heart Failure Stage. Journal of the American Heart Association, 2015, 4, .	3.7	174
28	Direct visualization of regional cardiac sympathetic dysfunction in stress-induced cardiomyopathy. Journal of Nuclear Cardiology, 2015, 22, 1317-1319.	2.1	5
29	To the Editor— Myocardial tissue characterization by cardiovascular magnetic resonance. Heart Rhythm, 2015, 12, e118.	0.7	0
30	Splenic Switch-off: A Tool to Assess Stress Adequacy in Adenosine Perfusion Cardiac MR Imaging. Radiology, 2015, 276, 732-740.	7.3	75
31	Adding T1 Mapping and Extracellular Volume Fraction for Myocardial Fibrosis Assessment: Implications for Cardiovascular Risk Assessment. , 2015, , 137-151.		0
32	Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. European Heart Journal, 2014, 35, 657-664.	2.2	297
33	Imaging the Area at Risk in Myocardial Infarction With Cardiovascular Magnetic Resonance. Journal of the American Heart Association, 2014, 3, .	3.7	4
34	Myocardial Ischemia after arterial switch procedure detected by regadenoson stress cardiac magnetic resonance. International Journal of Cardiology, 2014, 174, e16-e18.	1.7	4
35	Detection of ischaemic heart disease in symptomatic women. Nature Reviews Cardiology, 2014, 11, 505-506.	13.7	0
36	Cardiovascular Magnetic Resonance Imaging of Myocardial Interstitial Expansion in Hypertrophic Cardiomyopathy. Current Cardiovascular Imaging Reports, 2014, 7, 9267.	0.6	19

TIMOTHY C WONG

#	Article	IF	CITATIONS
37	Effectiveness of late gadolinium enhancement to improve outcomes prediction in patients referred for cardiovascular magnetic resonance after echocardiography. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 6.	3.3	30
38	Free-Breathing, Motion-Corrected Late Gadolinium Enhancement Is Robust and Extends Risk Stratification to Vulnerable Patients. Circulation: Cardiovascular Imaging, 2013, 6, 423-432.	2.6	59
39	Myocardial Damage Detected by Late Gadolinium Enhancement Cardiovascular Magnetic Resonance Is Associated With Subsequent Hospitalization for Heart Failure. Journal of the American Heart Association, 2013, 2, e000416.	3.7	39
40	Letter by Kuller and Wong Regarding Article, a & Comparative Effectiveness of Exercise Electrocardiography With or Without Myocardial Perfusion Single Photon Emission Computed Tomography in Women With Suspected Coronary Artery Disease: Results From the What Is the Optimal Method for Ischemia Evaluation in Women (WOMEN) Trialâ & Circulation, 2012, 125, e931; author reply	1.6	0
41	e932-5. Association Between Extracellular Matrix Expansion Quantified by Cardiovascular Magnetic Resonance and Short-Term Mortality. Circulation, 2012, 126, 1206-1216.	1.6	422
42	Imaging in the Evaluation of the Patient with New-Onset Heart Failure. Current Cardiovascular Imaging Reports, 2012, 5, 167-172.	0.6	1
43	Very large incidental pericardial effusion attributable to minoxidil: resolution without drainage. Journal of Cardiovascular Medicine, 2011, 12, 186-188.	1.5	9
44	Myocardial extravascular extracellular volume fraction measurement by gadolinium cardiovascular magnetic resonance in humans: slow infusion versus bolus. Journal of Cardiovascular Magnetic Resonance, 2011, 13, 16.	3.3	198