Xiaoyun Xing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2895500/publications.pdf Version: 2024-02-01

XIAOVUN XINC

#	Article	IF	CITATIONS
1	Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature, 2010, 466, 253-257.	27.8	1,568
2	Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Research, 2014, 24, 1963-1976.	5.5	408
3	Principles of regulatory information conservation between mouse and human. Nature, 2014, 515, 371-375.	27.8	259
4	Transposable elements drive widespread expression of oncogenes in human cancers. Nature Genetics, 2019, 51, 611-617.	21.4	253
5	DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nature Genetics, 2013, 45, 836-841.	21.4	207
6	Derivation of trophoblast stem cells from na $ ilde{A}$ ve human pluripotent stem cells. ELife, 2020, 9, .	6.0	203
7	Functional DNA methylation differences between tissues, cell types, and across individuals discovered using the M&M algorithm. Genome Research, 2013, 23, 1522-1540.	5.5	162
8	MicroRNAs Induce a Permissive Chromatin Environment that Enables Neuronal Subtype-Specific Reprogramming of Adult Human Fibroblasts. Cell Stem Cell, 2017, 21, 332-348.e9.	11.1	112
9	Combining MeDIP-seq and MRE-seq to investigate genome-wide CpG methylation. Methods, 2015, 72, 29-40.	3.8	93
10	Intermediate DNA methylation is a conserved signature of genome regulation. Nature Communications, 2015, 6, 6363.	12.8	91
11	A map of cis-regulatory elements and 3D genome structures in zebrafish. Nature, 2020, 588, 337-343.	27.8	80
12	Functional cis-regulatory modules encoded by mouse-specific endogenous retrovirus. Nature Communications, 2017, 8, 14550.	12.8	73
13	Tissue-specific DNA methylation is conserved across human, mouse, and rat, and driven by primary sequence conservation. BMC Genomics, 2017, 18, 724.	2.8	71
14	Comparative DNA methylome analysis of endometrial carcinoma reveals complex and distinct deregulation of cancer promoters and enhancers. BMC Genomics, 2014, 15, 868.	2.8	49
15	Mapping of Variable DNA Methylation Across Multiple Cell Types Defines a Dynamic Regulatory Landscape of the Human Genome. G3: Genes, Genomes, Genetics, 2016, 6, 973-986.	1.8	41
16	Perinatal deiodinase 2 expression in hepatocytes defines epigenetic susceptibility to liver steatosis and obesity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14018-14023.	7.1	34
17	Comparison of differential accessibility analysis strategies for ATAC-seq data. Scientific Reports, 2020, 10, 10150.	3.3	32
18	Inhibition of DNA Methyltransferases Blocks Mutant Huntingtin-Induced Neurotoxicity. Scientific Reports, 2016, 6, 31022.	3.3	28

XIAOYUN XING

#	Article	IF	CITATIONS
19	Whole-Genome DNA Methylation Profiling Identifies Epigenetic Signatures of Uterine Carcinosarcoma. Neoplasia, 2017, 19, 100-111.	5.3	27
20	A genome-wide CRISPR-Cas9 knockout screen identifies essential and growth-restricting genes in human trophoblast stem cells. Nature Communications, 2022, 13, 2548.	12.8	25
21	OCT4 cooperates with distinct ATP-dependent chromatin remodelers in naÃ ⁻ ve and primed pluripotent states in human. Nature Communications, 2021, 12, 5123.	12.8	17
22	Uncovering the transcriptomic and epigenomic landscape of nicotinic receptor genes in non-neuronal tissues. BMC Genomics, 2017, 18, 439.	2.8	15
23	Whole-genome profiling of DNA methylation and hydroxymethylation identifies distinct regulatory programs among innate lymphocytes. Nature Immunology, 2022, 23, 619-631.	14.5	14
24	Common DNA methylation dynamics in endometriod adenocarcinoma and glioblastoma suggest universal epigenomic alterations in tumorigenesis. Communications Biology, 2021, 4, 607.	4.4	9
25	DeepH&M: Estimating single-CpG hydroxymethylation and methylation levels from enrichment and restriction enzyme sequencing methods. Science Advances, 2020, 6, .	10.3	8
26	Epigenetic dynamics shaping melanophore and iridophore cell fate in zebrafish. Genome Biology, 2021, 22, 282.	8.8	8
27	Requisite Chromatin Remodeling for Myeloid and Erythroid Lineage Differentiation from Erythromyeloid Progenitors. Cell Reports, 2020, 33, 108395.	6.4	6
28	Soluble inflammatory mediators induce transcriptional re-organization that is independent of dna methylation changes in cultured human chorionic villous trophoblasts. Journal of Reproductive Immunology, 2018, 128, 2-8.	1.9	3
29	Abstract 2225: Transposable elements are an abundant and pan-cancer source of shared tumor-specific antigens and membrane targets 2021		0