
Christine V Hawkes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2894931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecology Letters, 2005, 8, 976-985.	6.4	432
2	THE IMPACT OF HERBIVORY ON PLANTS IN DIFFERENT RESOURCE CONDITIONS: A META-ANALYSIS. Ecology, 2001, 82, 2045-2058.	3.2	381
3	Clobal diversity and distribution of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 2011, 43, 2294-2303.	8.8	356
4	Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from metaâ€analysis and theoretical models. Ecology Letters, 2013, 16, 887-894.	6.4	327
5	Resilience in ecology: Abstraction, distraction, or where the action is?. Biological Conservation, 2014, 177, 43-51.	4.1	325
6	Fungal community responses to precipitation. Global Change Biology, 2011, 17, 1637-1645.	9.5	279
7	Ectomycorrhizal fungi slow soil carbon cycling. Ecology Letters, 2016, 19, 937-947.	6.4	224
8	Resilience vs. historical contingency in microbial responses to environmental change. Ecology Letters, 2015, 18, 612-625.	6.4	202
9	Are Invaders Moving Targets? The Generality and Persistence of Advantages in Size, Reproduction, and Enemy Release in Invasive Plant Species with Time since Introduction. American Naturalist, 2007, 170, 832-843.	2.1	201
10	Arbuscular Mycorrhizal Assemblages in Native Plant Roots Change in the Presence of Invasive Exotic Grasses. Plant and Soil, 2006, 281, 369-380.	3.7	197
11	Biotic plant–soil feedbacks across temporal scales. Journal of Ecology, 2013, 101, 309-315.	4.0	184
12	Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Global Change Biology, 2008, 14, 1181-1190.	9.5	176
13	Plant neighborhood control of arbuscular mycorrhizal community composition. New Phytologist, 2009, 183, 1188-1200.	7.3	172
14	INTERACTIVE EFFECTS OF FIRE AND MICROHABITAT ON PLANTS OF FLORIDA SCRUB. , 1998, 8, 935-946.		169
15	Historical climate controls soil respiration responses to current soil moisture. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6322-6327.	7.1	136
16	Embracing Variability in the Application of Plant–Soil Interactions to the Restoration of Communities and Ecosystems. Restoration Ecology, 2008, 16, 713-729.	2.9	132
17	Climate affects symbiotic fungal endophyte diversity and performance. American Journal of Botany, 2013, 100, 1435-1444.	1.7	111
18	Boundaries in Miniature: Two Examples from Soil. BioScience, 2003, 53, 739.	4.9	110

#	Article	IF	CITATIONS
19	Endophyte traits relevant to stress tolerance, resource use and habitat of origin predict effects on host plants. New Phytologist, 2019, 221, 2239-2249.	7.3	92
20	Evolutionary tradeâ€offs among decomposers determine responses to nitrogen enrichment. Ecology Letters, 2011, 14, 933-938.	6.4	84
21	Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture. Global Change Biology, 2016, 22, 1957-1964.	9.5	79
22	Order of plant host establishment alters the composition of arbuscular mycorrhizal communities. Ecology, 2010, 91, 2333-2343.	3.2	75
23	Why do we fly? Ecologists' sins of emission. Frontiers in Ecology and the Environment, 2009, 7, 294-296.	4.0	74
24	The temporal development and additivity of plant-soil feedback in perennial grasses. Plant and Soil, 2013, 369, 141-150.	3.7	72
25	Genotypic variation in traits linked to climate and aboveground productivity in a widespread C ₄ grass: evidence for a functional trait syndrome. New Phytologist, 2013, 199, 966-980.	7.3	69
26	NITROGEN CYCLING MEDIATED BY BIOLOGICAL SOIL CRUSTS AND ARBUSCULAR MYCORRHIZAL FUNGI. Ecology, 2003, 84, 1553-1562.	3.2	66
27	Tree species, spatial heterogeneity, and seasonality drive soil fungal abundance, richness, and composition in Neotropical rainforests. Environmental Microbiology, 2016, 18, 4662-4673.	3.8	61
28	Soil carbon cycling proxies: Understanding their critical role in predicting climate change feedbacks. Global Change Biology, 2018, 24, 895-905.	9.5	61
29	The Relationship between Open Space and Fire for Species in a Xeric Florida Shrubland. Bulletin of the Torrey Botanical Club, 1996, 123, 81.	0.6	60
30	Historical and current climate drive spatial and temporal patterns in fungal endophyte diversity. Fungal Ecology, 2016, 20, 108-114.	1.6	58
31	Translating Phytobiomes from Theory to Practice: Ecological and Evolutionary Considerations. Phytobiomes Journal, 2017, 1, 57-69.	2.7	56
32	Density and Seed Production of a Florida Endemic, Polygonella basiramia, in Relation to Time since Fire and Open Sand. American Midland Naturalist, 1995, 133, 138.	0.4	54
33	Perennial Biomass Grasses and the Mason–Dixon Line: Comparative Productivity across Latitudes in the Southern Great Plains. Bioenergy Research, 2013, 6, 276-291.	3.9	53
34	Effects of biological soil crusts on seed germination of four endangered herbs in a xeric Florida shrubland during drought. Plant Ecology, 2004, 170, 121-134.	1.6	52
35	Short-Term Precipitation Exclusion Alters Microbial Responses to Soil Moisture in a Wet Tropical Forest. Microbial Ecology, 2015, 69, 843-854.	2.8	46
36	Promises and challenges of eco-physiological genomics in the field: tests of drought responses in switchgrass. Plant Physiology, 2016, 172, pp.00545.2016.	4.8	46

#	Article	IF	CITATIONS
37	Root Interactions with Soil Microbial Communities and Processes. , 2007, , 1-29.		43
38	Temporal and Spatial Variation of Soil Bacteria Richness, Composition, and Function in a Neotropical Rainforest. PLoS ONE, 2016, 11, e0159131.	2.5	43
39	Drought legacy affects microbial community trait distributions related to moisture along a savannah grassland precipitation gradient. Journal of Ecology, 2021, 109, 3195-3210.	4.0	38
40	Biogeochemical and Microbial Legacies of Nonâ€Native Grasses Can Affect Restoration Success. Restoration Ecology, 2013, 21, 58-66.	2.9	36
41	Symbiosis and stress: how plant microbiomes affect host evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190590.	4.0	36
42	Spatial and temporal turnover of soil microbial communities is not linked to function in a primary tropical forest. Ecology, 2020, 101, e02985.	3.2	34
43	Historical climate legacies on soil respiration persist despite extreme changes in rainfall. Soil Biology and Biochemistry, 2020, 143, 107752.	8.8	33
44	Lateral root function and root overlap among mycorrhizal and nonmycorrhizal herbs in a Florida shrubland, measured using rubidium as a nutrient analog. American Journal of Botany, 2002, 89, 1289-1294.	1.7	32
45	EFFECTS OF LICHENS ON SEEDLING EMERGENCE IN A XERIC FLORIDA SHRUBLAND. Southeastern Naturalist, 2003, 2, 223-234.	0.4	32
46	Plant and root endophyte assembly history: interactive effects on native and exotic plants. Ecology, 2016, 97, 484-493.	3.2	31
47	Soil precipitation legacies influence intraspecific plant–soil feedback. Ecology, 2020, 101, e03142.	3.2	29
48	Differentiating between effects of invasion and diversity: impacts of aboveground plant communities on belowground fungal communities. New Phytologist, 2011, 189, 526-535.	7.3	28
49	Extension of Plant Phenotypes by the Foliar Microbiome. Annual Review of Plant Biology, 2021, 72, 823-846.	18.7	27
50	Ecological mechanisms underlying soil bacterial responses to rainfall along a steep natural precipitation gradient. FEMS Microbiology Ecology, 2018, 94, .	2.7	23
51	Ecosystem Impacts of Exotic Plants Can Feed Back to Increase Invasion in Western US Rangelands. Rangelands, 2010, 32, 21-31.	1.9	21
52	Microbial Tools in Agriculture Require an Ecological Context: Stress-Dependent Non-Additive Symbiont Interactions. Agronomy Journal, 2017, 109, 917-926.	1.8	20
53	Origin, local experience, and the impact of biotic interactions on native and introduced Senecio species. Biological Invasions, 2010, 12, 113-124.	2.4	18
54	The Predictive Power of Ecological Niche Modeling for Global Arbuscular Mycorrhizal Fungal Biogeography. Ecological Studies, 2017, , 143-158.	1.2	18

4

#	Article	IF	CITATIONS
55	Plant and Soil Drivers of Whole-Plant Microbiomes: Variation in Switchgrass Fungi from Coastal to Mountain Sites. Phytobiomes Journal, 2021, 5, 69-79.	2.7	17
56	Environmental Controls on Fungal Community Composition and Abundance Over 3ÂYears in Native and Degraded Shrublands. Microbial Ecology, 2014, 68, 807-817.	2.8	15
57	Heterogeneity in arbuscular mycorrhizal fungal communities may contribute to inconsistent plant-soil feedback in a Neotropical forest. Plant and Soil, 2018, 432, 29-44.	3.7	15
58	The Impact of Herbivory on Plants in Different Resource Conditions: A Meta-Analysis. Ecology, 2001, 82, 2045.	3.2	15
59	Microbes, memory and moisture: Predicting microbial moisture responses and their impact on carbon cycling. Functional Ecology, 2022, 36, 1430-1441.	3.6	15
60	Tropical Tree Species Effects on Soil pH and Biotic Factors and the Consequences for Macroaggregate Dynamics. Forests, 2018, 9, 184.	2.1	13
61	Tradeoffs in microbial carbon allocation may mediate soil carbon storage in future climates. Frontiers in Microbiology, 2013, 4, 261.	3.5	12
62	Simulating diverse native C4 perennial grasses with varying rainfall. Journal of Arid Environments, 2016, 134, 97-103.	2.4	12
63	Effects of extreme changes in precipitation on the physiology of C4 grasses. Oecologia, 2018, 188, 355-365.	2.0	11
64	Legacies in Switchgrass Resistance to and Recovery from Drought Suggest That Good Years Can Sustain Plants Through Bad Years. Bioenergy Research, 2018, 11, 86-94.	3.9	9
65	Plant biomass, not plant economics traits, determines responses of soil CO ₂ efflux to precipitation in the C ₄ grass <i>Panicum virgatum</i> . Journal of Ecology, 2020, 108, 2095-2106.	4.0	8
66	Managing Plant Microbiomes for Sustainable Biofuel Production. Phytobiomes Journal, 2021, 5, 3-13.	2.7	8
67	Microbial-mediated redistribution of ecosystem nitrogen cycling can delay progressive nitrogen limitation. Biogeochemistry, 2015, 126, 11-23.	3.5	7
68	Soil Water Content and Soil Respiration Rates Are Reduced for Years Following Wildfire in a Hot and Dry Climate. Global Biogeochemical Cycles, 2020, 34, e2020GB006699.	4.9	7
69	Intraspecific variation in precipitation responses of a widespread C4grass depends on site water limitation. Journal of Plant Ecology, 2016, , rtw040.	2.3	5
70	Widespread coâ€occurrence of Sebacinales and arbuscular mycorrhizal fungi in switchgrass roots and soils has limited dependence on soil carbon or nutrients. Plants People Planet, 2021, 3, 614-626.	3.3	5
71	Local Plants, Not Soils, Are the Primary Source of Foliar Fungal Community Assembly in a C4 Grass. Microbial Ecology, 2022, 84, 122-130.	2.8	4

72 Climate Change, Microbes, and Soil Carbon Cycling. , 2016, , 97-112.

#	Article	IF	CITATIONS
73	The future of microbial ecological niche theory and modeling. New Phytologist, 2021, 231, 508-511.	7.3	3
74	NITROGEN CYCLING MEDIATED BY BIOLOGICAL SOIL CRUSTS AND ARBUSCULAR MYCORRHIZAL FUNGI. , 2003, 84, 1553.		1
75	Ecosystem Impacts of Exotic Plants Can Feed Back to Increase Invasion in Western US Rangelands. Rangelands, 2010, 32, .	1.9	0
76	Regardless of N-substrate, multiple fungal root endophytes isolated from pastures outgrow and outcompete those isolated from undisturbed sites. Pedobiologia, 2017, 63, 52-58.	1.2	0
77	Effects of Plant-Soil Feedback on Switchgrass Productivity Related to Microbial Origin. Agronomy, 2020, 10, 1860.	3.0	0
78	Plant Host Traits Mediated by Foliar Fungal Symbionts and Secondary Metabolites. Microbial Ecology, 0, , .	2.8	0