Giovanni Finocchio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2894665/publications.pdf

Version: 2024-02-01

211 papers 6,728 citations

71102 41 h-index 79698 73 g-index

221 all docs

221 docs citations

times ranked

221

4424 citing authors

#	Article	IF	CITATIONS
1	Applications of Magnetic Materials and Spintronics in Smart Systems. , 2022, , 95-103.		1
2	Computing with Injection-Locked Spintronic Diodes. Physical Review Applied, 2022, 17, .	3.8	9
3	Spintronics-compatible Approach to Solving Maximum-Satisfiability Problems with Probabilistic Computing, Invertible Logic, and Parallel Tempering. Physical Review Applied, 2022, 17, .	3.8	14
4	Antiferromagnetic Parametric Resonance Driven by Voltage-Controlled Magnetic Anisotropy. Physical Review Applied, 2022, 17, .	3.8	6
5	Spin–orbit torque driven skyrmion motion under unconventional spin Hall effect. New Journal of Physics, 2022, 24, 053053.	2.9	2
6	Massively parallel probabilistic computing with sparse Ising machines. Nature Electronics, 2022, 5, 460-468.	26.0	59
7	Tuning the Coexistence Regime of Incomplete and Tubular Skyrmions in Ferromagnetic/Ferrimagnetic/Ferromagnetic Trilayers. ACS Applied Materials & Samp; Interfaces, 2022, 14, 34002-34010.	8.0	4
8	Modulation, Injection Locking, and Pulling in an Antiferromagnetic Spin-Orbit Torque Oscillator. IEEE Transactions on Magnetics, 2021, 57, 1-6.	2.1	3
9	The promise of spintronics for unconventional computing. Journal of Magnetism and Magnetic Materials, 2021, 521, 167506.	2.3	66
10	Reliability of Neural Networks Based on Spintronic Neurons. IEEE Magnetics Letters, 2021, 12, 1-5.	1.1	8
11	Micromagnetic understanding of switching and self-oscillations in ferrimagnetic materials. Applied Physics Letters, 2021, 118, 052403.	3.3	8
12	Identification of Néel Vector Orientation in Antiferromagnetic Domains Switched by Currents in <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Ni</mml:mi><mml:mi><mml:mi>Pt</mml:mi>Pt</mml:mi></mml:mrow></mml:math>	3.8	16
13	Thin Films. Physical Review Applied, 2021, 15, . Perspectives on spintronic diodes. Applied Physics Letters, 2021, 118, .	3.3	24
14	Observation of current-induced switching in non-collinear antiferromagnetic IrMn3 by differential voltage measurements. Nature Communications, 2021, 12, 3828.	12.8	31
15	Field-free spin-orbit torque-induced switching ofÂperpendicular magnetization in a ferrimagnetic layer with a vertical composition gradient. Nature Communications, 2021, 12, 4555.	12.8	105
16	Role of magnetic skyrmions for the solution of the shortest path problem. Journal of Magnetism and Magnetic Materials, 2021, 532, 167977.	2.3	6
17	Imaging the spin chirality of ferrimagnetic Néel skyrmions stabilized on topological antiferromagnetic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Mn</mml:mi><mml: 2021,="" 5<="" materials,="" physical="" review="" td=""><td>mn²:3<td>ml:mn></td></td></mml:></mml:msub></mml:mrow></mml:math>	mn ² :3 <td>ml:mn></td>	ml:mn>
18	Robustness of using degree of match in performing analog multiplication with spin-torque oscillators. Solid-State Electronics, 2021, 183, 108045.	1.4	2

#	Article	IF	Citations
19	Field-Free Magnetic Tunnel Junction for Logic Operations Based on Voltage-Controlled Magnetic Anisotropy. IEEE Magnetics Letters, 2021, 12, 1-4.	1.1	4
20	Automatic Crack Classification by Exploiting Statistical Event Descriptors for Deep Learning. Applied Sciences (Switzerland), 2021, 11, 12059.	2.5	13
21	Computing with Invertible Logic: Combinatorial Optimization with Probabilistic Bits., 2021,,.		5
22	Unified Framework for Micromagnetic Modeling of Ferro-, Ferri-, and Antiferromagnetic Materials at Mesoscopic Scale: Domain Wall Dynamics as a Case Study. IEEE Magnetics Letters, 2020, 11, 1-5.	1.1	5
23	Magnetization reversal signatures of hybrid and pure Néel skyrmions in thin film multilayers. APL Materials, 2020, 8, 111112.	5.1	10
24	Electrically tunable detector of THz-frequency signals based on an antiferromagnet. Applied Physics Letters, 2020, 117, .	3.3	31
25	Impact of Scaling on Physical Unclonable Function Based on Spin–Orbit Torque. IEEE Magnetics Letters, 2020, 11, 1-5.	1.1	4
26	Spin hall nano-oscillators based on two-dimensional Fe ₃ GeTe ₂ magnetic materials. Nanoscale, 2020, 12, 22808-22816.	5.6	7
27	Spin–orbit torque based physical unclonable function. Journal of Applied Physics, 2020, 128, .	2.5	35
28	Thermal generation, manipulation and thermoelectric detection of skyrmions. Nature Electronics, 2020, 3, 672-679.	26.0	86
29	Wave amplitude decay driven by anharmonic potential in nonlinear mass-in-mass systems. Applied Physics Letters, 2020, 117, 124101.	3.3	14
30	Low-Frequency Nonresonant Rectification in Spin Diodes. Physical Review Applied, 2020, 14, .	3.8	5
31	Dual-band microwave detector based on magnetic tunnel junctions. Applied Physics Letters, 2020, 117, .	3.3	11
32	Opportunities and challenges for spintronics in the microelectronics industry. Nature Electronics, 2020, 3, 446-459.	26.0	471
33	Coexistence of distinct skyrmion phases observed in hybrid ferromagnetic/ferrimagnetic multilayers. Nature Communications, 2020, 11 , 6365.	12.8	31
34	Pipeline for Advanced Contrast Enhancement (PACE) of Chest X-ray in Evaluating COVID-19 Patients by Combining Bidimensional Empirical Mode Decomposition and Contrast Limited Adaptive Histogram Equalization (CLAHE). Sustainability, 2020, 12, 8573.	3.2	14
35	Assessment of STT-MRAMs based on double-barrier MTJs for cache applications by means of a device-to-system level simulation framework. The Integration VLSI Journal, 2020, 71, 56-69.	2.1	22
36	Electrical manipulation of the magnetic order in antiferromagnetic PtMn pillars. Nature Electronics, 2020, 3, 92-98.	26.0	65

#	Article	IF	CITATIONS
37	Controlling the deformation of antiferromagnetic skyrmions in the high-velocity regime. Physical Review B, 2020, 101, .	3.2	33
38	Dynamics of domain-wall motion driven by spin-orbit torque in antiferromagnets. Physical Review B, 2020, 101, .	3.2	33
39	Domain periodicity in an easy-plane antiferromagnet with Dzyaloshinskii-Moriya interaction. Physical Review B, 2020, 102, .	3.2	6
40	Exploiting Double-Barrier MTJs for Energy-Efficient Nanoscaled STT-MRAMs. , 2019, , .		6
41	Enhanced Broad-band Radio Frequency Detection in Nanoscale Magnetic Tunnel Junction by Interface Engineering. ACS Applied Materials & Samp; Interfaces, 2019, 11, 29382-29387.	8.0	17
42	Nonlinear dispersion relation in anharmonic periodic mass-spring and mass-in-mass systems. Journal of Sound and Vibration, 2019, 462, 114929.	3.9	24
43	Experimental Demonstration of Spintronic Broadband Microwave Detectors and Their Capability for Powering Nanodevices. Physical Review Applied, 2019, 11, .	3.8	49
44	Compact Modeling of Perpendicular STT-MTJs With Double Reference Layers. IEEE Nanotechnology Magazine, 2019, 18, 1063-1070.	2.0	25
45	Configurational entropy of magnetic skyrmions as an ideal gas. Physical Review B, 2019, 99, .	3.2	17
46	Correction of Phase Errors in a Spin-Wave Transmission Line by Nonadiabatic Parametric Pumping. Physical Review Applied, 2019, 11, .	3.8	3
47	Sparse neuromorphic computing based on spin-torque diodes. Applied Physics Letters, 2019, 114, .	3.3	28
48	Voltage-Controlled Spintronic Stochastic Neuron Based on a Magnetic Tunnel Junction. Physical Review Applied, 2019, 11 , .	3.8	55
49	Stabilizing zero-field skyrmions in Ir/Fe/Co/Pt thin film multilayers by magnetic history control. Applied Physics Letters, 2019, 114, .	3.3	37
50	Anatomy of Skyrmionic Textures in Magnetic Multilayers. Advanced Materials, 2019, 31, e1807683.	21.0	75
51	Micromagnetic modeling of terahertz oscillations in an antiferromagnetic material driven by the spin Hall effect. Physical Review B, 2019, 99, .	3.2	49
52	Three-Dimensional Magnetic Page Memory. Physical Review Applied, 2019, 11, .	3.8	3
53	Theory of nonreciprocal spin-wave excitations in spin Hall oscillators with Dzyaloshinskii-Moriya interaction. Physical Review B, 2018, 97, .	3.2	5
54	Amplification and stabilization of large-amplitude propagating spin waves by parametric pumping. Applied Physics Letters, 2018, 112 , .	3.3	21

#	Article	IF	CITATIONS
55	Origin of temperature and field dependence of magnetic skyrmion size in ultrathin nanodots. Physical Review B, 2018, 97, .	3.2	77
56	Current-driven domain wall dynamics in ferromagnetic layers synthetically exchange-coupled by a spacer: A micromagnetic study. Journal of Applied Physics, 2018, 123, .	2.5	18
57	Seismic isolation of buildings using composite foundations based on metamaterials. Journal of Applied Physics, 2018, 123, .	2.5	67
58	Description of Statistical Switching in Perpendicular STT-MRAM Within an Analytical and Numerical Micromagnetic Framework. IEEE Transactions on Magnetics, 2018, 54, 1-10.	2.1	18
59	A Variation-Aware Timing Modeling Approach for Write Operation in Hybrid CMOS/STT-MTJ Circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 1086-1095.	5.4	41
60	Micromagnetic Analysis of Statistical Switching in Perpendicular Magnetic Tunnel Junctions With Double Reference Layers. IEEE Magnetics Letters, 2018, 9, 1-5.	1.1	14
61	A data-oriented self-calibration and robust chemical-shift encoding by using clusterization (OSCAR): Theory, optimization and clinical validation in neuromuscular disorders. Magnetic Resonance Imaging, 2018, 45, 84-96.	1.8	3
62	Micromagnetic simulations of spin-Hall driven dynamics in an antiferromagnet. , 2018, , .		0
63	Micromagnetic understanding of the skyrmion Hall angle current dependence in perpendicularly magnetized ferromagnets. Physical Review B, 2018, 98, .	3.2	16
64	Ultrahigh detection sensitivity exceeding 105 V/W in spin-torque diode. Applied Physics Letters, 2018, 113 , .	3.3	43
65	Chiral skyrmions in an anisotropy gradient. Physical Review B, 2018, 98, .	3.2	39
66	Observation of Magnetic Radial Vortex Nucleation in a Multilayer Stack with Tunable Anisotropy. Scientific Reports, 2018, 8, 7180.	3.3	28
67	Influence of the Second-Order Uniaxial Anisotropy on the Dynamical Proprieties of Magnetic Tunnel Junctions. IEEE Transactions on Magnetics, 2017, 53, 1-7.	2.1	5
68	Electrical detection of single magnetic skyrmion at room temperature. AIP Advances, 2017, 7, .	1.3	34
69	Micromagnetic Analysis of Statistical Switching in Perpendicular STT-MRAM With Interfacial Dzyaloshinskii–Moriya Interaction. IEEE Transactions on Magnetics, 2017, 53, 1-5.	2.1	4
70	Variability-Aware Analysis of Hybrid MTJ/CMOS Circuits by a Micromagnetic-Based Simulation Framework. IEEE Nanotechnology Magazine, 2017, 16, 160-168.	2.0	28
71	Rate of entropy model for irreversible processes in living systems. Scientific Reports, 2017, 7, 9134.	3.3	24
72	Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion. Journal Physics D: Applied Physics, 2017, 50, 325302.	2.8	86

#	Article	IF	CITATIONS
73	Excitation of Spin Waves in an In-Plane-Magnetized Ferromagnetic Nanowire Using Voltage-Controlled Magnetic Anisotropy. Physical Review Applied, 2017, 7, .	3.8	23
74	On the R 2 âž relaxometry in complex multi-peak multi-Echo chemical shift-based water-fat quantification: Applications to the neuromuscular diseases. Magnetic Resonance Imaging, 2017, 35, 4-14.	1.8	4
75	A Compact Model with Spin-Polarization Asymmetry for Nanoscaled Perpendicular MTJs. IEEE Transactions on Electron Devices, 2017, 64, 4346-4353.	3.0	40
76	Description of statistical switching in perpendicular STT-MRAM within a numerical micromagnetic framework. , 2017, , .		1
77	Spin-Hall nano-oscillator with oblique magnetization and Dzyaloshinskii-Moriya interaction as generator of skyrmions and nonreciprocal spin-waves. Scientific Reports, 2016, 6, 36020.	3.3	38
78	Giant spin-torque diode sensitivity in the absence of bias magnetic field. Nature Communications, 2016, 7, 11259.	12.8	123
79	Scalable synchronization of spin-Hall oscillators in out-of-plane field. Applied Physics Letters, 2016, 109, .	3.3	18
80	Nanomagnetic logic with non-uniform states of clocking. Journal Physics D: Applied Physics, 2016, 49, 145001.	2.8	11
81	Magnetic skyrmions: from fundamental to applications. Journal Physics D: Applied Physics, 2016, 49, 423001.	2.8	318
82	Magnetic Radial Vortex Stabilization and Efficient Manipulation Driven by the Dzyaloshinskii-Moriya Interaction and Spin-Transfer Torque. Physical Review Letters, 2016, 117, 087204.	7.8	71
83	Excitation of propagating spin waves in ferromagnetic nanowires by microwave voltage-controlled magnetic anisotropy. Scientific Reports, 2016, 6, 25018.	3.3	45
84	Reproducible formation of single magnetic bubbles in an array of patterned dots. Journal Physics D: Applied Physics, 2016, 49, 245002.	2.8	11
85	Numerical methods to achieve robust relaxometry mapping in multi-echo chemical shift-based MRI. , $2016, \ldots$		0
86	Vector hysteresis model to describe micromagnetic structures. , 2016, , .		1
87	A framework for the damage evaluation of acoustic emission signals through Hilbert–Huang transform. Mechanical Systems and Signal Processing, 2016, 75, 109-122.	8.0	75
88	Spintronic Oscillators Based on Spin-Transfer Torque and Spin-Orbit Torque. Handbook of Surface Science, 2015, 5, 297-334.	0.3	2
89	In-plane rotation of magnetic stripe domains in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:films. .<="" 2015,="" 92,="" b,="" physical="" review="" td=""><td>mro3v2 < mi</td><td>าท!:เธเธา>1</td></mml:films.></mml:msub></mml:mrow></mml:math>	mro 3v2 < mi	าท !:เธเ ธา>1
90	Skyrmion based microwave detectors and harvesting. Applied Physics Letters, 2015, 107, .	3.3	86

#	Article	IF	CITATIONS
91	Topological, non-topological and instanton droplets driven by spin-transfer torque in materials with perpendicular magnetic anisotropy and Dzyaloshinskii–Moriya Interaction. Scientific Reports, 2015, 5, 16184.	3.3	43
92	Micromagnetic study of skyrmion racetrack and microwave oscillator., 2015,,.		0
93	Topological skyrmion dynamics driven by spin-transfer torque. , 2015, , .		0
94	Micro-focused Brillouin light scattering study of the magnetization dynamics driven by Spin Hall effect in a transversely magnetized NiFe nanowire. Journal of Applied Physics, 2015, 117, 17D504.	2.5	6
95	Intrinsic synchronization of an array of spin-torque oscillators driven by the spin-Hall effect. Journal of Applied Physics, 2015, 117, 17E504.	2.5	19
96	Skyrmion motion induced by spin-Hall current in constrained geometries. , 2015, , .		0
97	Spin-hall nano-oscillator: A study based on the synchronization. , 2015, , .		0
98	Cortical and Subcortical Connections of the Human Claustrum Revealed In Vivo by Constrained Spherical Deconvolution Tractography. Cerebral Cortex, 2015, 25, 406-414.	2.9	88
99	Basal ganglia network by constrained spherical deconvolution: A possible corticoâ€pallidal pathway?. Movement Disorders, 2015, 30, 342-349.	3.9	67
100	Spintronics meets spin-orbitronics: Micromagnetic modelling of three terminal magnetic tunnel junctions. , 2014, , .		0
101	A Nonlinear and Non-Stationary Signal Analysis for Accurate Power Quality Monitoring in Smart Grids. , 2014, , .		6
102	Self-Modulated Soliton Modes Excited in a Nanocontact Spin-Torque Oscillator. IEEE Magnetics Letters, 2014, 5, 1-4.	1.1	28
103	Influence of the Dzyaloshinskii-Moriya interaction on the spin-torque diode effect. Journal of Applied Physics, 2014, 115, 17C730.	2.5	22
104	Time-frequency study of spintronic oscillators based on Hilbert-Huang Transform. , 2014, , .		1
105	Micromagnetic Study of Electrical-Field-Assisted Magnetization Switching in MTJ Devices. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	8
106	Micromagnetic Study of Spin-Transfer-Driven Vortex Dipole and Vortex Quadrupole Dynamics. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	8
107	Nanowire Spin-Torque Oscillator With Non-Uniform Polarizer: A Micromagnetic Study. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	1
108	Chirp Spectroscopy Applied to the Characterization of Ferromagnetic Resonance in Magnetic Tunnel Junctions. IEEE Transactions on Magnetics, 2014, 50, 1-5.	2.1	0

#	Article	IF	Citations
109	Modeling of hysteresis in magnetic multidomains. Physica B: Condensed Matter, 2014, 435, 62-65.	2.7	19
110	Micromagnetic analysis of dynamical bubble-like solitons based on the time domain evolution of the topological density. Journal of Applied Physics, 2014, 115, 17D139.	2.5	15
111	Seismic metamaterials based on isochronous mechanical oscillators. Applied Physics Letters, 2014, 104,	3.3	87
112	Switching Properties in Magnetic Tunnel Junctions With Interfacial Perpendicular Anisotropy: Micromagnetic Study. IEEE Transactions on Magnetics, 2014, 50, 1-5.	2.1	26
113	Spin-Hall nano-oscillator: A micromagnetic study. Applied Physics Letters, 2014, 105, .	3.3	55
114	Hysteretic Synchronization in Spin-Torque Nanocontact Oscillators: A Micromagnetic Study. IEEE Nanotechnology Magazine, 2014, 13, 532-536.	2.0	15
115	A generalized tool for accurate time-domain separation of excited modes in spin-torque oscillators. Journal of Applied Physics, 2014, 115, 17D108.	2.5	17
116	A strategy for the design of skyrmion racetrack memories. Scientific Reports, 2014, 4, 6784.	3.3	689
117	Domain Wall Dynamics in Asymmetric Stacks: The Roles of Rashba Field and the Spin Hall Effect. IEEE Transactions on Magnetics, 2013, 49, 3105-3108.	2.1	10
118	Intrinsic and Thermal Linewidths of Spin-Transfer-Driven Vortex Self-Oscillations. IEEE Transactions on Magnetics, 2013, 49, 3203-3206.	2.1	0
119	The Role of the Oersted Field on the Current-Driven Domain Wall Dynamics Along Wires With Square Cross Section. IEEE Transactions on Magnetics, 2013, 49, 3211-3214.	2.1	3
120	Nanoscale spintronic oscillators based on the excitation of confined soliton modes. Journal of Applied Physics, 2013, 114, 163908.	2.5	22
121	Spin transfer nano-oscillators. Nanoscale, 2013, 5, 2219.	5.6	167
122	Injection locking at zero field in two free layer spin-valves. Applied Physics Letters, 2013, 102, .	3.3	8
123	Ultralow-current-density and bias-field-free spin-transfer nano-oscillator. Scientific Reports, 2013, 3, 1426.	3.3	162
124	Switching of a single ferromagnetic layer driven by spin Hall effect. Applied Physics Letters, 2013, 102, .	3.3	77
125	Coherent and incoherent spin torque oscillations in a nanopillar magnetic spin-valve. Applied Physics Letters, 2013, 102, 252402.	3.3	14
126	Non-stationary excitation of two localized spin-wave modes in a nano-contact spin torque oscillator. Journal of Applied Physics, 2013, 114, 153906.	2.5	16

#	Article	IF	Citations
127	Dynamical properties of three terminal magnetic tunnel junctions: Spintronics meets spin-orbitronics. Applied Physics Letters, 2013, 103, .	3.3	18
128	The influence of the spin-orbit torques on the current-driven domain wall motion. AIP Advances, 2013, 3 , .	1.3	12
129	10.1063/1.4795597.1., 2013, , .		1
130	Magnetic switching driven by nanosecond scale heat and magnetic field pulses: An application of macrospin Landau-Lifshitz-Bloch model. Applied Physics Letters, 2012, 101, .	3.3	11
131	Noise-Like Sequences to Resonant Excite the Writing of a Universal Memory Based on Spin-Transfer-Torque MRAM. IEEE Transactions on Magnetics, 2012, 48, 2407-2414.	2.1	17
132	Micromagnetic simulations using Graphics Processing Units. Journal Physics D: Applied Physics, 2012, 45, 323001.	2.8	117
133	Mathematical Modelling of Magnetic Hysteresis in Exchange-Bias Spin Valves. IEEE Transactions on Magnetics, 2012, 48, 3367-3370.	2.1	25
134	Semi-implicit integration scheme for Landau–Lifshitz–Gilbert-Slonczewski equation. Journal of Applied Physics, 2012, 111, .	2.5	63
135	Non-Adlerian phase slip and nonstationary synchronization of spin-torque oscillators to a microwave source. Physical Review B, 2012, 86, .	3.2	21
136	Phase locking and frequency doubling in spin-transfer-torque oscillators with two coupled free layers. Physical Review B, $2012, 86, .$	3.2	39
137	Micromagnetic Study of Synchronization of Nonlinear Spin-Torque Oscillators to Microwave Current and Field. Advances in Condensed Matter Physics, 2012, 2012, 1-5.	1.1	3
138	Wideband microwave signal to trigger fast switching processes in magnetic tunnel junctions. Journal of Applied Physics, 2012, 111, 07C909.	2. 5	15
139	High-Power Coherent Microwave Emission from Magnetic Tunnel Junction Nano-oscillators with Perpendicular Anisotropy. ACS Nano, 2012, 6, 6115-6121.	14.6	125
140	Micromagnetic understanding of stochastic resonance driven by spin-transfer-torque. Physical Review B, 2011, 83, .	3.2	43
141	Hysteretic spin-wave excitation in spin-torque oscillators as a function of the in-plane field angle: A micromagnetic description. Journal of Applied Physics, 2011, 110, 123913.	2.5	10
142	Magnonics Crystal Composed by Magnetic Antivortices Confined in Antidots. IEEE Transactions on Magnetics, 2011, 47, 2498-2501.	2.1	4
143	High frequency spin-torque-oscillators with reduced perpendicular torque effect based on asymmetric vortex polarizer. Journal of Applied Physics, 2011, 110, .	2.5	37
144	Stochastic resonance of a domain wall in a stripe with two pinning sites. Applied Physics Letters, 2011, 98, 072507.	3.3	14

#	Article	IF	CITATIONS
145	Domain Wall Dynamics Driven by a Localized Injection of a Spin-Polarized Current. IEEE Transactions on Magnetics, 2010, 46, 1523-1526.	2.1	7
146	Reducing the Non-Linearities of a Spin-Torque Oscillator by Varying the Amplitude of the External Field Applied Along the In-Plane Hard-Axis. IEEE Transactions on Magnetics, 2010, 46, 1519-1522.	2.1	9
147	Combined Frequency-Amplitude Nonlinear Modulation: Theory and Applications. IEEE Transactions on Magnetics, 2010, 46, 3629-3634.	2.1	41
148	Single-Shot Time-Domain Studies of Spin-Torque-Driven Switching in Magnetic Tunnel Junctions. Physical Review Letters, 2010, 104, 097201.	7.8	62
149	Spin-transfer-torque resonant switching and injection locking in the presence of a weak external microwave field for spin valves with perpendicular materials. Physical Review B, 2010, 82, .	3.2	42
150	Spin-torque driven magnetic vortex self-oscillations in perpendicular magnetic fields. Applied Physics Letters, 2010, 96, 102508.	3.3	27
151	Thermal effects on spin-torque-driven switching in high-tunneling-magnetoresistance magnetic tunnel junctions. Journal of Applied Physics, 2010, 108, 083911.	2.5	3
152	Time-domain study of frequency-power correlation in spin-torque oscillators. Physical Review B, 2010, 81, .	3.2	22
153	Magnetic vortex chirality switching driven by a spin-polarized current. , 2010, , .		0
154	Experimental Evidence of Self-Localized and Propagating Spin Wave Modes in Obliquely Magnetized Current-Driven Nanocontacts. Physical Review Letters, 2010, 105, 217204.	7.8	176
155	Nonstationary magnetization dynamics driven by spin transfer torque. Physical Review B, 2009, 79, .	3.2	21
156	Magnetic vortex driven by non-uniform injection of spin-polarized current in nano-scale spin valves. Journal of Magnetism and Magnetic Materials, 2009, 321, 602-606.	2.3	0
157	Magnetization switching driven by spin-transfer-torque in high-TMR magnetic tunnel junctions. Journal of Magnetism and Magnetic Materials, 2009, 321, 3913-3920.	2.3	18
158	Numerical Analysis of the Nonlinear Excitation of Subcritical Spin-Wave Modes Within a Micromagnetic Framework. IEEE Transactions on Magnetics, 2009, 45, 5220-5223.	2.1	5
159	Micromagnetic simulations of persistent oscillatory modes excited by spin-polarized current in nanoscale exchange-biased spin valves. Journal of Applied Physics, 2009, 105, 07D107.	2.5	13
160	Long-timescale fluctuations in zero-field magnetic vortex oscillations driven by dc spin-polarized current. Physical Review B, 2009, 80, .	3.2	36
161	Micromagnetic model of magnetization reversal driven by spin-polarized current in MgO-based magnetic tunnel junctions. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2396-2399.	0.8	1
162	A numerical solution of the magnetization reversal modeling in a permalloy thin film using fifth order Runge–Kutta method with adaptive step size control. Physica B: Condensed Matter, 2008, 403, 464-468.	2.7	58

#	Article	IF	Citations
163	Numerical study of the magnetization reversal driven by spin-polarized current in MgO-based magnetic tunnel junctions. Physica B: Condensed Matter, 2008, 403, 364-367.	2.7	1
164	Spin-torque-induced rotational dynamics of a magnetic vortex dipole. Physical Review B, 2008, 78, .	3.2	37
165	Strong linewidth variation for spin-torque nano-oscillators as a function of in-plane magnetic field angle. Physical Review B, 2008, 78, .	3.2	61
166	Micromagnetic Modeling of Nanocontact Spin-Torque Oscillators With Perpendicular Anisotropy at Zero Bias Field. IEEE Transactions on Magnetics, 2008, 44, 2512-2515.	2.1	14
167	Modeling of fast switching processes in nanoscale spin valves. Journal of Applied Physics, 2008, 103, 07B117.	2.5	5
168	Micromagnetic study of full widths at half maximum in spin-transfer-driven self-oscillations of individual nanomagnets. Journal of Applied Physics, 2008, 103, 07B107.	2.5	5
169	Nanocontact spin-transfer oscillators based on perpendicular anisotropy in the free layer. Applied Physics Letters, 2007, 91, .	3.3	19
170	Micromagnetic modeling of magnetization switching driven by spin-polarized current in magnetic tunnel junctions. Journal of Applied Physics, 2007, 101, 063914.	2.5	43
171	Micromagnetic modal analysis of spin-transfer-driven ferromagnetic resonance of individual nanomagnets. Journal of Applied Physics, 2007, 101, 09A502.	2.5	22
172	Coupling of spin-transfer torque to microwave magnetic field: A micromagnetic modal analysis. Journal of Applied Physics, 2007, 101, 053914.	2.5	31
173	Influence of the Oersted field in the dynamics of spin-transfer microwave oscillators. Journal of Applied Physics, 2007, 101, 09C108.	2.5	15
174	Magnetization reversal driven by spin-polarized current in exchange-biased nanoscale spin valves. Physical Review B, 2007, 76, .	3.2	37
175	Magnetization dynamics in CoFeâ^•AlO/Permalloy and CoFeâ^•MgO/Permalloy magnetic tunnel junctions. Journal of Applied Physics, 2007, 101, 09A508.	2.5	4
176	Magnetization dynamics driven by spin-polarized current in nanomagnets. Journal of Magnetism and Magnetic Materials, 2007, 316, 488-491.	2.3	26
177	Spin-torque switching in Py/Cu/Py and Py/Cu/CoPt spin-valve nanopillars. Journal of Magnetism and Magnetic Materials, 2007, 316, 492-495.	2.3	12
178	Micromagnetic Modeling of Magnetization Reversal in Nano-Scale Point Contact Devices. IEEE Transactions on Magnetics, 2007, 43, 2938-2940.	2.1	12
179	Micromagnetic Investigation of Precession Dynamics in Magnetic Nanopillars. IEEE Transactions on Magnetics, 2007, 43, 2935-2937.	2.1	1
180	Magnetization dynamics driven by the combined action of ac magnetic field and dc spin-polarized current. Journal of Applied Physics, 2006, 99, 08G507.	2.5	28

#	Article	IF	CITATIONS
181	Removing numerical instabilities in the Preisach model identification using genetic algorithms. Physica B: Condensed Matter, 2006, 372, 91-96.	2.7	4
182	A comparison of spin-polarized current driven magnetization reversal in Co/Cu/Co magnetic multilayers. Physica B: Condensed Matter, 2006, 372, 294-298.	2.7	2
183	Fast computing vector hysteresis model. Physica B: Condensed Matter, 2006, 372, 128-132.	2.7	1
184	Influence of the magnetostatic coupling in magnetization switching driven by spin-polarized current. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 126, 190-193.	3.5	8
185	A genetic approach to solve numerical problems in the Preisach model identification. IEEE Transactions on Magnetics, 2006, 42, 1526-1537.	2.1	4
186	About identification of Scalar Preisach functions of soft magnetic materials. IEEE Transactions on Magnetics, 2006, 42, 923-926.	2.1	26
187	A simplified model for vector hysteresis computation. IEEE Transactions on Magnetics, 2006, 42, 955-958.	2.1	8
188	Vector Hysteresis Model at Micromagnetic Scale. IEEE Transactions on Magnetics, 2006, 42, 3138-3140.	2.1	9
189	Analytical solution of Everett integral using Lorentzian Preisach function approximation. Journal of Magnetism and Magnetic Materials, 2006, 300, 451-470.	2.3	16
190	Micromagnetic simulations of nanosecond magnetization reversal processes in magnetic nanopillar. Journal of Applied Physics, 2006, 99, 08G522.	2.5	36
191	Vector Hysteresis Model at Micromagnetic Scale. , 2006, , .		O
192	Trends in spin-transfer-driven magnetization dynamics of CoFeâ^•AlOâ^•Py and CoFeâ^•MgOâ^•Py magnetic tunnel junctions. Applied Physics Letters, 2006, 89, 262509.	3.3	27
193	Micromagnetic computations of spin polarized current-driven magnetization processes. Journal of Magnetism and Magnetic Materials, 2005, 286, 381-385.	2.3	52
194	Spin-polarized current-driven switching in permalloy nanostructures. Journal of Applied Physics, 2005, 97, 10E302.	2.5	21
195	Effect of the classical ampere field in micromagnetic computations of spin polarized current-driven magnetization processes. Journal of Applied Physics, 2005, 97, 10C713.	2.5	44
196	Remarks about a fuzzy approach to model scalar hysteresis. Journal of Applied Physics, 2005, 97, 10E507.	2.5	1
197	A comparative study of Preisach scalar hysteresis models. Physica B: Condensed Matter, 2004, 343, 164-170.	2.7	18
198	State-independent hypothesis to model the behavior of magnetic materials. Journal of Magnetism and Magnetic Materials, 2004, 280, 158-163.	2.3	22

#	Article	IF	CITATIONS
199	Influence of the cut angle and grain size on the behavior of non-oriented magnetic steels. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3365-3368.	0.8	0
200	Thermal activation in spin-polarized current driven magnetization reversal process. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3381-3384.	0.8	0
201	A general fuzzy model of the scalar hysteresis. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3428-3431.	0.8	0
202	An isotropic analytical vector Preisach model based on the Lorentzian function. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3740-3743.	0.8	0
203	Super-Lorentzian Preisach function and its applicability to model scalar hysteresis. Physica B: Condensed Matter, 2004, 343, 121-126.	2.7	3
204	A fuzzy model of scalar hysteresis on soft magnetic materials. Physica B: Condensed Matter, 2004, 343, 132-136.	2.7	10
205	Increasing the Accuracy of the Numerical Identification of the Modified Scalar Preisach Model. IEEE Transactions on Magnetics, 2004, 40, 892-895.	2.1	7
206	Reversible magnetization and Lorentzian function approximation. Journal of Applied Physics, 2003, 93, 6635-6637.	2.5	26
207	Remarks about preisach function approximation using lorentzian function and its identification for nonoriented steels. IEEE Transactions on Magnetics, 2003, 39, 3028-3030.	2.1	27
208	Micromagnetic Modeling of Magnetization Dynamics in Magnetic Tunnel Junctions Driven by Spin-Polarized Current. , 0 , , .		0
209	Magnetization Reversal driven by Spin-Polarized Current in Exchanged Biased Samples. , 0, , .		0
210	Ultralow-current-density and bias-field-free spin-transfer nano-oscillator. , 0, .		1
211	A strategy for the design of skyrmion racetrack memories. , 0, .		1