Xiao-dong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2894430/publications.pdf

Version: 2024-02-01

567281 552781 31 714 15 26 citations h-index g-index papers 31 31 31 1073 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Disruption of protein quality control of the human ether-Ã-go-go related gene K+ channel results in profound long QT syndrome. Heart Rhythm, 2022, 19, 281-292.	0.7	7
2	Beat-to-beat dynamic regulation of intracellular pH in cardiomyocytes. IScience, 2022, 25, 103624.	4.1	4
3	Protocol to record and quantify the intracellular pH in contracting cardiomyocytes. STAR Protocols, 2022, 3, 101301.	1.2	1
4	Cardiac small-conductance calcium-activated potassium channels in health and disease. Pflugers Archiv European Journal of Physiology, 2021, 473, 477-489.	2.8	21
5	Transgene Delivery to Human Induced Pluripotent Stem Cells Using Nanoparticles. Pharmaceuticals, 2021, 14, 334.	3.8	3
6	Prestin amplifies cardiac motor functions. Cell Reports, 2021, 35, 109097.	6.4	17
7	Protocol to assess two distinct components of the nonlinear capacitance in mouse cardiomyocytes. STAR Protocols, 2021, 2, 100891.	1.2	0
8	Suppression of inflammation and fibrosis using soluble epoxide hydrolase inhibitors enhances cardiac stem cellâ€based therapy. Stem Cells Translational Medicine, 2020, 9, 1570-1584.	3.3	12
9	NODAL inhibition promotes differentiation of pacemaker-like cardiomyocytes from human induced pluripotent stem cells. Stem Cell Research, 2020, 49, 102043.	0.7	19
10	Cooperativity of K _v 7.4 channels confers ultrafast electromechanical sensitivity and emergent properties in cochlear outer hair cells. Science Advances, 2020, 6, eaball04.	10.3	26
11	Different arrhythmia-associated calmodulin mutations have distinct effects on cardiac SK channel regulation. Journal of General Physiology, 2020, 152, .	1.9	7
12	The local translation of KNa in dendritic projections of auditory neurons and the roles of KNa in the transition from hidden to overt hearing loss. Aging, 2019, 11, 11541-11564.	3.1	9
13	Coupling of SK channels, L-type Ca2+ channels, and ryanodine receptors in cardiomyocytes. Scientific Reports, 2018, 8, 4670.	3.3	30
14	Highly efficient transfection of human induced pluripotent stem cells using magnetic nanoparticles. International Journal of Nanomedicine, 2018, Volume 13, 6073-6078.	6.7	18
15	Contribution of the cyclic nucleotide gated channel subunit, CNG-3, to olfactory plasticity in Caenorhabditis elegans. Scientific Reports, 2017, 7, 169.	3.3	18
16	Action Potential Shortening and Impairment of Cardiac Function by Ablation of $\langle i \rangle Slc26a6 \langle i \rangle$. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	4.8	17
17	Distinct subcellular mechanisms for the enhancement of the surface membrane expression of SK2 channel by its interacting proteins, αâ€actinin2 and filamin A. Journal of Physiology, 2017, 595, 2271-2284.	2.9	18
18	Molecular Mechanisms and New Treatment Paradigm for Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 2016, 9, .	4.8	39

#	Article	IF	CITATIONS
19	Mechanisms of Calmodulin Regulation of Different Isoforms of Kv7.4 K+ Channels. Journal of Biological Chemistry, 2016, 291, 2499-2509.	3.4	17
20	Regulation of Gene Transcription by Voltage-gated L-type Calcium Channel, Cav1.3. Journal of Biological Chemistry, 2015, 290, 4663-4676.	3.4	44
21	Novel Role for Caspase-Activated DNase in the Regulation of Pathological Cardiac Hypertrophy. Hypertension, 2015, 65, 871-881.	2.7	30
22	Small-conductance Ca2+-activated K+ channels and cardiac arrhythmias. Heart Rhythm, 2015, 12, 1845-1851.	0.7	62
23	Feedback Mechanisms for Cardiac-Specific MicroRNAs and cAMP Signaling in Electrical Remodeling. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 942-950.	4.8	16
24	Critical roles of a small conductance Ca2+-activated K+ channel (SK3) in the repolarization process of atrial myocytes. Cardiovascular Research, 2014, 101, 317-325.	3.8	73
25	Genetic, Cellular, and Functional Evidence for Ca ²⁺ Inflow through Ca _v 1.2 and Ca _v 1.3 Channels in Murine Spiral Ganglion Neurons. Journal of Neuroscience, 2014, 34, 7383-7393.	3.6	19
26	Interferon Regulatory Factor 1 Is Required for Cardiac Remodeling in Response to Pressure Overload. Hypertension, 2014, 64, 77-86.	2.7	75
27	Slc26a6 functions as an electrogenic Clâ^'/HCO3â^' exchanger in cardiac myocytes. Cardiovascular Research, 2013, 100, 383-391.	3.8	15
28	Amphiphilic Blockers Punch through a Mutant CLC-O Pore. Journal of General Physiology, 2009, 133, 59-68.	1.9	12
29	Blocking Pore-open Mutants of CLC-0 by Amphiphilic Blockers. Journal of General Physiology, 2009, 133, 43-58.	1.9	14
30	ATP Inhibition of CLC-1 Is Controlled by Oxidation and Reduction. Journal of General Physiology, 2008, 132, 421-428.	1.9	48
31	Roles of K149, G352, and H401 in the Channel Functions of CIC-0: Testing the Predictions from Theoretical Calculations. Journal of General Physiology, 2006, 127, 435-447.	1.9	23