Zhenghui Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2894253/publications.pdf

Version: 2024-02-01

26 papers

3,698 citations

279798 23 h-index 552781 26 g-index

26 all docs

 $\begin{array}{c} 26 \\ \text{docs citations} \end{array}$

times ranked

26

2043 citing authors

#	Article	IF	CITATIONS
1	Fine-Tuning Energy Levels via Asymmetric End Groups Enables Polymer Solar Cells with Efficiencies over 17%. Joule, 2020, 4, 1236-1247.	24.0	344
2	Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Science China Chemistry, 2020, 63, 325-330.	8.2	292
3	A Layer-by-Layer Architecture for Printable Organic Solar Cells Overcoming the Scaling Lag of Module Efficiency. Joule, 2020, 4, 407-419.	24.0	272
4	Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors. Energy and Environmental Science, 2018, 11, 3275-3282.	30.8	261
5	Fineâ€Tuning of Molecular Packing and Energy Level through Methyl Substitution Enabling Excellent Small Molecule Acceptors for Nonfullerene Polymer Solar Cells with Efficiency up to 12.54%. Advanced Materials, 2018, 30, 1706124.	21.0	253
6	A nonfullerene acceptor with a 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%. Energy and Environmental Science, 2019, 12, 2529-2536.	30.8	213
7	A Novel Thiophene-Fused Ending Group Enabling an Excellent Small Molecule Acceptor for High-Performance Fullerene-Free Polymer Solar Cells with 11.8% Efficiency. Solar Rrl, 2017, 1, 1700044.	5.8	198
8	Simultaneous enhanced efficiency and thermal stability in organic solar cells from a polymer acceptor additive. Nature Communications, 2020, 11, 1218.	12.8	197
9	Adding a Third Component with Reduced Miscibility and Higher LUMO Level Enables Efficient Ternary Organic Solar Cells. ACS Energy Letters, 2020, 5, 2711-2720.	17.4	188
10	Concurrent improvement in <i>J</i> _{SC} and <i>V</i> _{OC} in high-efficiency ternary organic solar cells enabled by a red-absorbing small-molecule acceptor with a high LUMO level. Energy and Environmental Science, 2020, 13, 2115-2123.	30.8	164
11	Asymmetric Acceptors with Fluorine and Chlorine Substitution for Organic Solar Cells toward 16.83% Efficiency. Advanced Functional Materials, 2020, 30, 2000456.	14.9	164
12	Fine-tuning of side-chain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency. Energy and Environmental Science, 2021, 14, 3469-3479.	30.8	158
13	Regioâ€Regular Polymer Acceptors Enabled by Determined Fluorination on End Groups for Allâ€Polymer Solar Cells with 15.2 % Efficiency. Angewandte Chemie - International Edition, 2021, 60, 10137-10146.	13.8	145
14	Altering alkyl-chains branching positions for boosting the performance of small-molecule acceptors for highly efficient nonfullerene organic solar cells. Science China Chemistry, 2020, 63, 361-369.	8.2	128
15	High-Efficiency Ternary Organic Solar Cells with a Good Figure-of-Merit Enabled by Two Low-Cost Donor Polymers. ACS Energy Letters, 2022, 7, 2547-2556.	17.4	109
16	Rational Anode Engineering Enables Progresses for Different Types of Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2100492.	19.5	108
17	Altering the Positions of Chlorine and Bromine Substitution on the End Group Enables Highâ€Performance Acceptor and Efficient Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2002649.	19.5	103
18	Fluorinated End Group Enables Highâ€Performance Allâ€Polymer Solar Cells with Nearâ€Infrared Absorption and Enhanced Device Efficiency over 14%. Advanced Energy Materials, 2021, 11, 2003171.	19.5	89

ZHENGHUI LUO

#	Article	IF	CITATION
19	Allâ€polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives. Aggregate, 2022, 3, e58.	9.9	85
20	Isomerization Strategy of Nonfullerene Smallâ€Molecule Acceptors for Organic Solar Cells. Advanced Functional Materials, 2020, 30, 2004477.	14.9	58
21	A compatible polymer acceptor enables efficient and stable organic solar cells as a solid additive. Journal of Materials Chemistry A, 2020, 8, 17706-17712.	10.3	51
22	Improving the performance of near infrared binary polymer solar cells by adding a second non-fullerene intermediate band-gap acceptor. Journal of Materials Chemistry C, 2020, 8, 909-915.	5.5	47
23	Improved organic solar cell efficiency based on the regulation of an alkyl chain on chlorinated non-fullerene acceptors. Materials Chemistry Frontiers, 2020, 4, 2428-2434.	5.9	27
24	Boosting Highly Efficient Hydrocarbon Solvent-Processed All-Polymer-Based Organic Solar Cells by Modulating Thin-Film Morphology. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34301-34307.	8.0	20
25	Regioâ€Regular Polymer Acceptors Enabled by Determined Fluorination on End Groups for Allâ€Polymer Solar Cells with 15.2 % Efficiency. Angewandte Chemie, 2021, 133, 10225-10234.	2.0	13
26	Optimizing spectral and morphological match of nonfullerene acceptors toward efficient indoor organic photovoltaics with enhanced light source adaptability. Nano Energy, 2022, 98, 107281.	16.0	11