Daniel Bikle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2893263/publications.pdf Version: 2024-02-01

		15504	19190
178	15,160	65	118
papers	citations	h-index	g-index
213	213	213	13963
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Association of Vitamin D Status and COVID-19-Related Hospitalization and Mortality. Journal of General Internal Medicine, 2022, 37, 853-861.	2.6	43
2	Vitamin D regulation of immune function during covid-19. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 279-285.	5.7	23
3	Vitamin D Regulation of Immune Function. Current Osteoporosis Reports, 2022, 20, 186-193.	3.6	30
4	The Free Hormone Hypothesis: When, Why, and How to Measure the Free Hormone Levels to Assess Vitamin D, Thyroid, Sex Hormone, and Cortisol Status. JBMR Plus, 2021, 5, e10418.	2.7	43
5	Decreased Calcium-Sensing Receptor Expression Controls Calcium Signaling and Cell-To-Cell Adhesion Defects in Aged Skin. Journal of Investigative Dermatology, 2021, 141, 2577-2586.	0.7	15
6	Hypercalcemia in non-Hodgkin's lymphoma due to cosecretion of PTHrP and 1,25-dihydroxyvitamin D. Osteoporosis International, 2021, 32, 2587-2592.	3.1	6
7	Vitamin D regulation of and by long non coding RNAs. Molecular and Cellular Endocrinology, 2021, 532, 111317.	3.2	11
8	Introduction: Special Issue on Vitamin D Dedicated to the Memory of Anthony W Norman. JBMR Plus, 2021, 5, e10445.	2.7	3
9	Ligandâ€Independent Actions of the Vitamin D Receptor: More Questions Than Answers. JBMR Plus, 2021, 5, e10578.	2.7	11
10	Ablation of Ephrin B2 in Col2 Expressing Cells Delays Fracture Repair. Endocrinology, 2020, 161, .	2.8	4
11	Transcriptional Regulation of Dental Epithelial Cell Fate. International Journal of Molecular Sciences, 2020, 21, 8952.	4.1	12
12	Deletion of Mediator 1 suppresses TGFl 2 signaling leading to changes in epidermal lineages and regeneration. PLoS ONE, 2020, 15, e0238076.	2.5	4
13	Vitamin D: Newer Concepts of Its Metabolism and Function at the Basic and Clinical Level. Journal of the Endocrine Society, 2020, 4, bvz038.	0.2	77
14	Editorial: Vitamin D Binding Protein, Total and Free Vitamin D Levels in Different Physiological and Pathophysiological Conditions. Frontiers in Endocrinology, 2020, 11, 40.	3.5	93
15	New aspects of vitamin D metabolism and action — addressing the skin as source and target. Nature Reviews Endocrinology, 2020, 16, 234-252.	9.6	181
16	p120 atenin suppresses proliferation and tumor growth of oral squamous cell carcinoma via inhibiting nuclear phospholipase Câ€l³1 signaling. Journal of Cellular Physiology, 2020, 235, 9399-9413.	4.1	8
17	The Vitamin D Receptor as Tumor Suppressor in Skin. Advances in Experimental Medicine and Biology, 2020, 1268, 285-306.	1.6	47
18	MECHANISMS IN ENDOCRINOLOGY: Vitamin D and COVID-19. European Journal of Endocrinology, 2020, 183, R133-R147.	3.7	259

Daniel Bikle

#	Article	IF	CITATIONS
19	Vitamin D and calcium signaling in epidermal stem cells and their regeneration. World Journal of Stem Cells, 2020, 12, 604-611.	2.8	13
20	Title is missing!. , 2020, 15, e0238076.		0
21	Title is missing!. , 2020, 15, e0238076.		0
22	Title is missing!. , 2020, 15, e0238076.		0
23	Title is missing!. , 2020, 15, e0238076.		0
24	Do sunscreens block vitamin D production? A critical review by an international panel of experts. British Journal of Dermatology, 2019, 181, 884-884.	1.5	3
25	The Fracture Callus Is Formed by Progenitors of Different Skeletal Origins in a Siteâ€Specific Manner. JBMR Plus, 2019, 3, e10193.	2.7	4
26	Myosin 1a Regulates Osteoblast Differentiation Independent of Intestinal Calcium Transport. Journal of the Endocrine Society, 2019, 3, 1993-2011.	0.2	5
27	Vitamin D Metabolism Revised: Fall of Dogmas. Journal of Bone and Mineral Research, 2019, 34, 1985-1992.	2.8	66
28	New developments in our understanding of vitamin D metabolism, action and treatment. Metabolism: Clinical and Experimental, 2019, 98, 112-120.	3.4	66
29	Rapid onset of hypercalcemia from high-grade lymphoma in the setting of HIV-related immune reconstitution inflammatory syndrome. Bone Reports, 2019, 10, 100194.	0.4	4
30	Skeletal and Extraskeletal Actions of Vitamin D: Current Evidence and Outstanding Questions. Endocrine Reviews, 2019, 40, 1109-1151.	20.1	611
31	IGFâ€l signaling mediated cellâ€specific skeletal mechanoâ€transduction. Journal of Orthopaedic Research, 2018, 36, 576-583.	2.3	46
32	Vitamin D Assays. Frontiers of Hormone Research, 2018, 50, 14-30.	1.0	21
33	Determination of Free 25(OH)D Concentrations and Their Relationships to Total 25(OH)D in Multiple Clinical Populations. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3278-3288.	3.6	74
34	Vitamin D assays and the definition of hypovitaminosis D: results from the First International Conference on Controversies in Vitamin D. British Journal of Clinical Pharmacology, 2018, 84, 2194-2207.	2.4	211
35	Physiologic and pathophysiologic roles of extra renal CYP27b1: Case report and review. Bone Reports, 2018, 8, 255-267.	0.4	72
36	Vitamin D Receptor Is Required for Proliferation, Migration, and Differentiation of Epidermal Stem Cells and Progeny duringACutaneous Wound Repair. Journal of Investigative Dermatology, 2018, 138, 2423-2431.	0.7	45

#	Article	IF	CITATIONS
37	Vitamin D and bone and beyond. Bone Reports, 2018, 9, 120-121.	0.4	7
38	Vitamin D metabolites in captivity? Should we measure free or total 25(OH)D to assess vitamin D status?. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 105-116.	2.5	125
39	Current Controversies. Endocrinology and Metabolism Clinics of North America, 2017, 46, 901-918.	3.2	105
40	Vitamin D Prevents Sunburn: Tips for the Summer?. Journal of Investigative Dermatology, 2017, 137, 2045-2047.	0.7	6
41	Vitamin D: Mechanisms of Action and Clinical Applications. Endocrinology and Metabolism Clinics of North America, 2017, 46, xvii-xviii.	3.2	6
42	Combined Deletion of the Vitamin D Receptor and Calcium-Sensing Receptor Delays Wound Re-epithelialization. Endocrinology, 2017, 158, 1929-1938.	2.8	30
43	Mediator 1 contributes to enamel mineralization as a coactivator for Notch1 signaling and stimulates transcription of the alkaline phosphatase gene. Journal of Biological Chemistry, 2017, 292, 13531-13540.	3.4	16
44	Current Assays to Determine Free 25-Hydroxyvitamin D in Serum. Journal of AOAC INTERNATIONAL, 2017, 100, 1323-1327.	1.5	23
45	Phosphoprotein Phosphatase 1 Is Required for Extracellular Calcium-Induced Keratinocyte Differentiation. BioMed Research International, 2016, 2016, 1-11.	1.9	3
46	Disruption of Vitamin D and Calcium Signaling in Keratinocytes Predisposes to Skin Cancer. Frontiers in Physiology, 2016, 7, 296.	2.8	48
47	Regulation of Ligand and Shear Stress-induced Insulin-like Growth Factor 1 (IGF1) Signaling by the Integrin Pathway. Journal of Biological Chemistry, 2016, 291, 8140-8149.	3.4	29
48	Response of Vitamin D Concentration to Vitamin D ₃ Administration in Older Adults without Sun Exposure: A Randomized Doubleâ€Blind Trial. Journal of the American Geriatrics Society, 2016, 64, 65-72.	2.6	43
49	The Endocrine Society Centennial: Extrarenal Production of 1,25 Dihyroxyvitamin D Is Now Proven. Endocrinology, 2016, 157, 1717-1718.	2.8	8
50	<scp>T</scp> he vitamin D hypothesis: <scp>D</scp> ead or alive?. American Journal of Physical Anthropology, 2016, 161, 756-757.	2.1	1
51	Extraskeletal actions of vitamin D. Annals of the New York Academy of Sciences, 2016, 1376, 29-52.	3.8	127
52	Claude D Arnaud, Jr, MD (1929–2016): ASBMR Loses a Founding Father. Journal of Bone and Mineral Research, 2016, 31, 2067-2068.	2.8	0
53	The Transient Role for Calcium and VitaminÂD during the Developmental HairÂFollicle Cycle. Journal of Investigative Dermatology, 2016, 136, 1337-1345.	0.7	17
54	Synthesis and evaluation of vitamin D receptor-mediated activities of cholesterol and vitamin D metabolites. European Journal of Medicinal Chemistry, 2016, 109, 238-246.	5.5	14

#	Article	IF	CITATIONS
55	Vitamin D and calcium regulation of epidermal wound healing. Journal of Steroid Biochemistry and Molecular Biology, 2016, 164, 379-385.	2.5	62
56	Gender-Specific Differences in the Skeletal Response to Continuous PTH in Mice Lacking the IGF1 Receptor in Mature Osteoblasts. Journal of Bone and Mineral Research, 2015, 30, 1064-1076.	2.8	13
57	Pregnane X receptor expression in skin: the good and the bad. Experimental Dermatology, 2015, 24, 829-830.	2.9	1
58	IGF-I Signaling in Osterix-Expressing Cells Regulates Secondary Ossification Center Formation, Growth Plate Maturation, and Metaphyseal Formation During Postnatal Bone Development. Journal of Bone and Mineral Research, 2015, 30, 2239-2248.	2.8	29
59	Osteoblast-Specific Loss of IGF1R Signaling Results in Impaired Endochondral Bone Formation During Fracture Healing. Journal of Bone and Mineral Research, 2015, 30, 1572-1584.	2.8	48
60	Maternal Hypercalcemia Due to Failure of 1,25-Dihydroxyvitamin-D ₃ Catabolism in a Patient With <i>CYP24A1</i> Mutations. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 2832-2836.	3.6	48
61	A Case of Hypercalcemia and Overexpression of CYP27B1 in Skeletal Muscle Lesions in a Patient with HIV Infection After Cosmetic Injections with Polymethylmethacrylate (PMMA) for Wasting. Calcified Tissue International, 2015, 97, 634-639.	3.1	11
62	Total 25(<scp>OH</scp>) vitamin D, free 25(<scp>OH</scp>) vitamin D and markers of bone turnover in cirrhotics with and without synthetic dysfunction. Liver International, 2015, 35, 2294-2300.	3.9	37
63	Selective Hyaluronanââ,¬â€œCD44 Signaling Promotes miRNA-21 Expression and Interacts with Vitamin D Function during Cutaneous Squamous Cell Carcinomas Progression Following UV Irradiation. Frontiers in Immunology, 2015, 6, 224.	4.8	26
64	Vitamin D receptor, a tumor suppressor in skin. Canadian Journal of Physiology and Pharmacology, 2015, 93, 349-354.	1.4	32
65	Novel mechanisms for the vitamin D receptor (VDR) in the skin and in skin cancer. Journal of Steroid Biochemistry and Molecular Biology, 2015, 148, 47-51.	2.5	56
66	Calcium, Orai1, and Epidermal Proliferation. Journal of Investigative Dermatology, 2014, 134, 1506-1508.	0.7	9
67	LncRNA profiling reveals new mechanism for VDR protection against skin cancer formation. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144, 87-90.	2.5	73
68	Vitamin D and cancer: the promise not yet fulfilled. Endocrine, 2014, 46, 29-38.	2.3	43
69	Ephrin B2/EphB4 Mediates the Actions of IGF-I Signaling in Regulating Endochondral Bone Formation. Journal of Bone and Mineral Research, 2014, 29, 1900-1913.	2.8	47
70	Vitamin D Metabolism, Mechanism of Action, and Clinical Applications. Chemistry and Biology, 2014, 21, 319-329.	6.0	1,221
71	Lnc <scp>RNA</scp> : a new player in 1 <i>α</i> , 25(<scp>OH</scp>) ₂ vitamin D ₃ / <scp>VDR</scp> protection against skin cancer formation. Experimental Dermatology, 2014, 23, 147-150.	2.9	67
72	Evidence That Loss-of-Function Filaggrin Gene Mutations Evolved in Northern Europeans to Favor Intracutaneous Vitamin D3 Production. Evolutionary Biology, 2014, 41, 388-396.	1.1	45

#	Article	IF	CITATIONS
73	Reciprocal role of vitamin D receptor on β-catenin regulated keratinocyte proliferation and differentiation. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144, 237-241.	2.5	42
74	Highlights from the 16th Vitamin D Workshop, San Francisco, CA, June 11–14, 2013. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144, 1-4.	2.5	1
75	Variability in free 25(OH) vitamin D levels in clinical populations. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144, 156-158.	2.5	52
76	Ablation of Coactivator Med1 Switches the Cell Fate of Dental Epithelia to That Generating Hair. PLoS ONE, 2014, 9, e99991.	2.5	31
77	The Tumor Suppressor Actions of the Vitamin D Receptor in Skin. , 2014, 810, 282-302.		11
78	1α,25(OH)2-Dihydroxyvitamin D3/VDR protects the skin from UVB-induced tumor formation by interacting with the β-catenin pathway. Journal of Steroid Biochemistry and Molecular Biology, 2013, 136, 229-232.	2.5	43
79	Protective role of vitamin D signaling in skin cancer formation. Journal of Steroid Biochemistry and Molecular Biology, 2013, 136, 271-279.	2.5	43
80	The Protective Role of Vitamin D Signaling in Non-Melanoma Skin Cancer. Cancers, 2013, 5, 1426-1438.	3.7	17
81	Autocrine and Paracrine Actions of IGF-I Signaling in Skeletal Development. Bone Research, 2013, 1, 249-259.	11.4	52
82	PTH/PTHrP and Vitamin D Control Antimicrobial Peptide Expression and Susceptibility to Bacterial Skin Infection. Science Translational Medicine, 2012, 4, 135ra66.	12.4	47
83	Vitamin D Receptor Mediates DNA Repair and Is UV Inducible in Intact Epidermis but Not in Cultured Keratinocytes. Journal of Investigative Dermatology, 2012, 132, 2097-2100.	0.7	41
84	Discovery of the First Irreversible Small Molecule Inhibitors of the Interaction between the Vitamin D Receptor and Coactivators. Journal of Medicinal Chemistry, 2012, 55, 4640-4651.	6.4	43
85	Coactivator MED1 Ablation in Keratinocytes Results in Hair-Cycling Defects and Epidermal Alterations. Journal of Investigative Dermatology, 2012, 132, 1075-1083.	0.7	40
86	Calcium regulation of keratinocyte differentiation. Expert Review of Endocrinology and Metabolism, 2012, 7, 461-472.	2.4	245
87	Ablation of the Calcium-Sensing Receptor in Keratinocytes Impairs Epidermal Differentiation and Barrier Function. Journal of Investigative Dermatology, 2012, 132, 2350-2359.	0.7	73
88	Vitamin D in cutaneous carcinogenesis. Journal of the American Academy of Dermatology, 2012, 67, 803.e12.	1.2	44
89	Protective actions of vitamin D in UVB induced skin cancer. Photochemical and Photobiological Sciences, 2012, 11, 1808-1816.	2.9	39
90	The Nonskeletal Effects of Vitamin D: An Endocrine Society Scientific Statement. Endocrine Reviews, 2012, 33, 456-492.	20.1	611

#	Article	IF	CITATIONS
91	Vitamin D and Bone. Current Osteoporosis Reports, 2012, 10, 151-159.	3.6	192
92	Vitamin D and the skin: Physiology and pathophysiology. Reviews in Endocrine and Metabolic Disorders, 2012, 13, 3-19.	5.7	162
93	Insulin like growth factor-I: a critical mediator of the skeletal response to parathyroid hormone. Current Molecular Pharmacology, 2012, 5, 135-42.	1.5	25
94	Vitamin D metabolism and function in the skin. Molecular and Cellular Endocrinology, 2011, 347, 80-89.	3.2	180
95	Vitamin D Regulation of Immune Function. Vitamins and Hormones, 2011, 86, 1-21.	1.7	110
96	Endoplasmic reticulum Ca2+ depletion activates XBP1 and controls terminal differentiation in keratinocytes and epidermis. British Journal of Dermatology, 2011, 164, 16-25.	1.5	57
97	Vitamin D: an ancient hormone. Experimental Dermatology, 2011, 20, 7-13.	2.9	140
98	IGF-1R signaling in chondrocytes modulates growth plate development by interacting with the PTHrP/Ihh pathway. Journal of Bone and Mineral Research, 2011, 26, 1437-1446.	2.8	105
99	The Calcium-Sensing Receptor-Dependent Regulation of Cell–Cell Adhesion and Keratinocyte Differentiation Requires Rho and Filamin A. Journal of Investigative Dermatology, 2011, 131, 1119-1128.	0.7	51
100	Overexpression of Hedgehog Signaling Is Associated with Epidermal Tumor Formation in Vitamin D Receptor–Null Mice. Journal of Investigative Dermatology, 2011, 131, 2289-2297.	0.7	91
101	Vitamin D and the skin. Journal of Bone and Mineral Metabolism, 2010, 28, 117-130.	2.7	72
102	Disruption of the hedgehog signaling pathway contributes to the hair follicle cycling deficiency in Vdr knockout mice. Journal of Cellular Physiology, 2010, 225, 482-489.	4.1	53
103	Association of Prediagnostic Serum Vitamin D Levels with the Development of Basal Cell Carcinoma. Journal of Investigative Dermatology, 2010, 130, 1438-1443.	0.7	68
104	The Transcriptional Coactivator DRIP/Mediator Complex Is Involved in Vitamin D Receptor Function and Regulates Keratinocyte Proliferation and Differentiation. Journal of Investigative Dermatology, 2010, 130, 2377-2388.	0.7	33
105	Differential regulation of epidermal function by VDR coactivators. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 308-313.	2.5	22
106	Vitamin D: newly discovered actions require reconsideration of physiologic requirements. Trends in Endocrinology and Metabolism, 2010, 21, 375-384.	7.1	135
107	Phosphatidylinositol-4-phosphate 5-kinase 11± Mediates Extracellular Calcium-induced Keratinocyte Differentiation. Molecular Biology of the Cell, 2009, 20, 1695-1704.	2.1	55
108	Extra Renal Synthesis of 1,25-dihydroxyvitamin D and its Health Implications. Clinical Reviews in Bone and Mineral Metabolism, 2009, 7, 114-125.	0.8	53

#	Article	IF	CITATIONS
109	Vitamin D Regulation of Immune Function: Implications for Bone Loss During Inflammation. Clinical Reviews in Bone and Mineral Metabolism, 2009, 7, 301-309.	0.8	1
110	Vitamin D and immune function: Understanding common pathways. Current Osteoporosis Reports, 2009, 7, 58-63.	3.6	122
111	Vitamin D Receptor and Coactivators SRC2 and 3 Regulate Epidermis-Specific Sphingolipid Production and Permeability Barrier Formation. Journal of Investigative Dermatology, 2009, 129, 1367-1378.	0.7	98
112	Hypercalcemia and Overexpression of CYP27B1 in a Patient With Nephrogenic Systemic Fibrosis: Clinical Vignette and Literature Review. Journal of Bone and Mineral Research, 2009, 24, 1135-1139.	2.8	8
113	Quantification of the Vitamin D Receptorâ "Coregulator Interaction. Biochemistry, 2009, 48, 1454-1461.	2.5	62
114	Nonclassic Actions of Vitamin D. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 26-34.	3.6	773
115	UV radiation, vitamin D and epidermal carcinogenesis. Expert Review of Dermatology, 2009, 4, 557-566.	0.3	0
116	Growth Hormone/Insulin-Like Growth Factor-1/PTH Axis in Bone. Journal of Bone and Mineral Research, 2008, 23, 581-583.	2.8	11
117	Vitamin D Receptor, UVR, and Skin Cancer: A Potential Protective Mechanism. Journal of Investigative Dermatology, 2008, 128, 2357-2361.	0.7	44
118	Histone Acetylation in Keratinocytes Enables Control of the Expression of Cathelicidin and CD14 by 1,25-Dihydroxyvitamin D3. Journal of Investigative Dermatology, 2008, 128, 816-824.	0.7	137
119	Inactivation of the Calcium Sensing Receptor Inhibits E-cadherin-mediated Cell-Cell Adhesion and Calcium-induced Differentiation in Human Epidermal Keratinocytes. Journal of Biological Chemistry, 2008, 283, 3519-3528.	3.4	109
120	Vitamin D and the immune system: role in protection against bacterial infection. Current Opinion in Nephrology and Hypertension, 2008, 17, 348-352.	2.0	150
121	The Recruitment of Phosphatidylinositol 3-Kinase to the E-cadherin-Catenin Complex at the Plasma Membrane Is Required for Calcium-induced Phospholipase C-γ1 Activation and Human Keratinocyte Differentiation. Journal of Biological Chemistry, 2007, 282, 8695-8703.	3.4	97
122	What is new in vitamin D: 2006–2007. Current Opinion in Rheumatology, 2007, 19, 383-388.	4.3	71
123	Differential role of two VDR coactivators, DRIP205 and SRC-3, in keratinocyte proliferation and differentiation. Journal of Steroid Biochemistry and Molecular Biology, 2007, 103, 776-780.	2.5	43
124	Vitamin D Insufficiency/Deficiency in Gastrointestinal Disorders. Journal of Bone and Mineral Research, 2007, 22, V50-V54.	2.8	59
125	Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D–dependent mechanism. Journal of Clinical Investigation, 2007, 117, 803-811.	8.2	576
126	Regulation of Human Epidermal Keratinocyte Differentiation by the Vitamin D Receptor and its Coactivators DRIP205, SRC2, and SRC3. Journal of Investigative Dermatology, 2007, 127, 874-880.	0.7	76

Daniel Bikle

#	Article	IF	CITATIONS
127	The Role of the Calcium Sensing Receptor in Regulating Intracellular Calcium Handling in Human Epidermal Keratinocytes. Journal of Investigative Dermatology, 2007, 127, 1074-1083.	0.7	74
128	IGF-I Receptor Is Required for the Anabolic Actions of Parathyroid Hormone on Bone. Journal of Bone and Mineral Research, 2007, 22, 1329-1337.	2.8	130
129	Integrin Regulation of the IGF-I Receptor in Bone, and the Response to Load. Clinical Reviews in Bone and Mineral Metabolism, 2007, 5, 222-233.	0.8	1
130	Role of IGF-I Signaling in Regulating Osteoclastogenesis. Journal of Bone and Mineral Research, 2006, 21, 1350-1358.	2.8	158
131	Development and progression of alopecia in the vitamin D receptor null mouse. Journal of Cellular Physiology, 2006, 207, 340-353.	4.1	79
132	Hairless Suppresses Vitamin D Receptor Transactivation in Human Keratinocytes. Endocrinology, 2006, 147, 314-323.	2.8	75
133	Gender differences in the response of CD-1 mouse bone to parathyroid hormone: potential role of IGF-I. Journal of Endocrinology, 2006, 189, 279-287.	2.6	25
134	Phospholipase Cl̂ ³ 1 Is Required for Activation of Store-Operated Channels in Human Keratinocytes. Journal of Investigative Dermatology, 2005, 124, 187-197.	0.7	81
135	Calcium-induced Human Keratinocyte Differentiation Requires src- and fyn-mediated Phosphatidylinositol 3-Kinase–dependent Activation of Phospholipase C-γ1. Molecular Biology of the Cell, 2005, 16, 3236-3246.	2.1	90
136	Vitamin D and skin cancer: A problem in gene regulation. Journal of Steroid Biochemistry and Molecular Biology, 2005, 97, 83-91.	2.5	38
137	Vitamin D and Skin Cancer. Journal of Nutrition, 2004, 134, 3472S-3478S.	2.9	45
138	25 Hydroxyvitamin D 1 α-Hydroxylase Is Required for Optimal Epidermal Differentiation and Permeability Barrier Homeostasis. Journal of Investigative Dermatology, 2004, 122, 984-992.	0.7	133
139	The role of the calcium-sensing receptor in epidermal differentiation. Cell Calcium, 2004, 35, 265-273.	2.4	109
140	Vitamin D regulated keratinocyte differentiation. Journal of Cellular Biochemistry, 2004, 92, 436-444.	2.6	138
141	Calcium and 1,25(OH)2D: interacting drivers of epidermal differentiation. Journal of Steroid Biochemistry and Molecular Biology, 2004, 89-90, 355-360.	2.5	103
142	Two Distinct Coactivators, DRIP/Mediator and SRC/p160, Are Differentially Involved in Vitamin D Receptor Transactivation during Keratinocyte Differentiation. Molecular Endocrinology, 2003, 17, 2329-2339.	3.7	82
143	Squamous Cell Carcinomas Fail to Respond to the Prodifferentiating Actions of 1,25(OH)2D3: Why?. Recent Results in Cancer Research, 2003, 164, 111-122.	1.8	14
144	The Mechanism of 1,25-Dihydroxyvitamin D3Autoregulation in Keratinocytes. Journal of Biological Chemistry, 2002, 277, 36987-36990.	3.4	65

#	Article	IF	CITATIONS
145	Epidermal expression of the full-length extracellular calcium-sensing receptor is required for normal keratinocyte differentiation. Journal of Cellular Physiology, 2002, 192, 45-54.	4.1	65
146	Lack of the Vitamin D Receptor is Associated with Reduced Epidermal Differentiation and Hair Follicle Growth. Journal of Investigative Dermatology, 2002, 118, 11-16.	0.7	167
147	Inhibition of 1,25-Dihydroxyvitamin-D-Induced Keratinocyte Differentiation by Blocking the Expression of Phospholipase C-γ1. Journal of Investigative Dermatology, 2001, 117, 1250-1254.	0.7	26
148	The Extracellular Calcium-sensing Receptor Is Required for Calcium-induced Differentiation in Human Keratinocytes. Journal of Biological Chemistry, 2001, 276, 41079-41085.	3.4	130
149	Phospholipase C-γ1 Is Required for Calcium-induced Keratinocyte Differentiation. Journal of Biological Chemistry, 1999, 274, 20421-20424.	3.4	69
150	The response of bone to unloading. Journal of Bone and Mineral Metabolism, 1999, 17, 233-244.	2.7	207
151	1,25 dihydroxyvitamin D3 enhances the calcium response of keratinocytes. , 1999, 178, 188-196.		46
152	All-trans retinoic acid blocks the antiproliferative prodifferentiating actions of 1,25-Dihydroxyvitamin D3 in normal human keratinocytes. Journal of Cellular Physiology, 1998, 174, 1-8.	4.1	27
153	Allâ€ŧrans retinoic acid blocks the antiproliferative prodifferentiating actions of 1,25â€Dihydroxyvitamin D3 in normal human keratinocytes. Journal of Cellular Physiology, 1998, 174, 1-8.	4.1	2
154	Cloning of the Human Phospholipase C-Î ³ 1 Promoter and Identification of a DR6-type Vitamin D-responsive Element. Journal of Biological Chemistry, 1997, 272, 6573-6577.	3.4	65
155	Cloning of Human 25-Hydroxyvitamin D-1α-Hydroxylase and Mutations Causing Vitamin D-Dependent Rickets Type 1. Molecular Endocrinology, 1997, 11, 1961-1970.	3.7	325
156	Association of a Brush Border Myosin I-Like Protein with Vesicular Organelles of the Secretory Pathway in Chicken Enterocytes. Microscopy and Microanalysis, 1997, 3, 241-242.	0.4	0
157	Regional Responsiveness of the Tibia to Intermittent Administration of Parathyroid Hormone as Affected by Skeletal Unloading. Journal of Bone and Mineral Research, 1997, 12, 1068-1074.	2.8	39
158	Squamous Carcinoma Cell Lines Fail to Respond to 1,25-Dihydroxyvitamin D Despite Normal Levels of the Vitamin D Receptor. Journal of Investigative Dermatology, 1996, 106, 522-525.	0.7	36
159	Alendronate increases skeletal mass of growing rats during unloading by inhibiting resorption of calcified cartilage. Journal of Bone and Mineral Research, 1994, 9, 1777-1787.	2.8	63
160	1,25-Dihydroxyvitamin D3 potentiates the keratinocyte response to calcium Journal of Biological Chemistry, 1994, 269, 14723-14729.	3.4	107
161	Localization and quantitation of calcium pools and calcium binding sites in cultured human keratinocytes. Journal of Cellular Physiology, 1993, 154, 101-112.	4.1	27
162	Alcohol-Induced Bone Disease: Relationship to Age and Parathyroid Hormone Levels. Alcoholism: Clinical and Experimental Research, 1993, 17, 690-695.	2.4	72

#	Article	IF	CITATIONS
163	Vitamin D, Calcium, and Epidermal Differentiation*. Endocrine Reviews, 1993, 14, 3-19.	20.1	237
164	Lanthanum influx into cultured human keratinocytes: Effect on calcium flux and terminal differentiation. Journal of Cellular Physiology, 1992, 151, 623-629.	4.1	39
165	Uncoupling of the calcium-sensing mechanism and differentiation in squamous carcinoma cell lines. Experimental Cell Research, 1991, 192, 567-573.	2.6	30
166	Squamous Carcinoma Cell Lines Produce 1,25 Dihydroxyvitamin D, but Fail to Respond to Its Prodifferentiating Effect. Journal of Investigative Dermatology, 1991, 97, 435-441.	0.7	48
167	Role of intracellular-free calcium in the cornified envelope formation of keratinocytes: Differences in the mode of action of extracellular calcium and 1,25 dihydroxyvitamin D3. Journal of Cellular Physiology, 1991, 146, 94-100.	4.1	134
168	Tumor Necrosis Factor-α Regulation of 1,25-Dihydroxy vitamin D Production by Human Keratinocytes*. Endocrinology, 1991, 129, 33-38.	2.8	68
169	Calcium regulation of growth and differentiation of normal human keratinocytes: Modulation of differentiation competence by stages of growth and extracellular calcium. Journal of Cellular Physiology, 1990, 143, 294-302.	4.1	229
170	Free, and Not Total, 1,25-Dihydroxyvitamin D Regulates 25-Hydroxyvitamin D Metabolism by Keratinocytes. Endocrinology, 1989, 124, 649-654.	2.8	132
171	Regulation of 1,25-Dihydroxyvitamin D Production in Human Keratinocytes by Interferon-γ*. Endocrinology, 1989, 124, 655-660.	2.8	79
172	Biochemical and morphological characterization of growth and differentiation of normal human neonatal keratinocytes in a serum-free medium. Journal of Cellular Physiology, 1988, 134, 229-237.	4.1	165
173	Neonatal human foreskin keratinocytes produce 1,25-dihydroxyvitamin D3. Biochemistry, 1986, 25, 1545-1548.	2.5	206
174	Assessment of the Free Fraction of 25-Hydroxyvitamin D in Serum and Its Regulation by Albumin and the Vitamin D-Binding Protein *. Journal of Clinical Endocrinology and Metabolism, 1986, 63, 954-959.	3.6	527
175	The Villus Gradient of Brush Border Membrane Calmodulin and the Calcium-Independent Calmodulin-Binding Protein Parallels that of Calcium-Accumulating Ability*. Endocrinology, 1986, 118, 727-732.	2.8	18
176	Calmodulin may mediate 1,25-dihydroxyvitamin D-stimulated intestinal calcium transport. FEBS Letters, 1984, 174, 30-33.	2.8	42
177	Calcium Flux across Chick Duodenal Brush Border Membrane Vesicles: Regulation by 1,25-Dihydroxyvitamin D*. Endocrinology, 1983, 113, 2072-2080.	2.8	36
178	Independence of 1,25-dihydroxyvitamin D3-mediated calcium transport from de novo RNA and protein synthesis Journal of Biological Chemistry, 1978, 253, 484-488.	3.4	133